A318181
Expansion of e.g.f. exp((1 - exp(-6*x))/6).
Original entry on oeis.org
1, 1, -5, 19, 1, -1103, 15211, -123821, 120865, 19464193, -474727877, 7017193075, -50549088671, -931708750607, 49742453940331, -1276858353426317, 21239149342811329, -100057086073774463, -9091588769200298501, 454849803186974314579, -13529950476868715792063, 262961916344710204693681
Offset: 0
-
seq(n!*coeff(series(exp((1-exp(-6*x))/6),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 21; CoefficientList[Series[Exp[(1 - Exp[-6 x])/6], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-6)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 21}]
a[n_] := a[n] = Sum[(-6)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}]
Table[(-6)^n BellB[n, -1/6], {n, 0, 21}] (* Peter Luschny, Aug 20 2018 *)
A053101
a(n) = ((6*n+8)(!^6))/8(!^6), related to A034689 (((6*n+2)(!^6))/2 sextic, or 6-factorials).
Original entry on oeis.org
1, 14, 280, 7280, 232960, 8852480, 389509120, 19475456000, 1090625536000, 67618783232000, 4598077259776000, 340257717223424000, 27220617377873920000, 2340973094497157120000, 215369524693738455040000
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100, this sequence,
A053102,
A053103 (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(7/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
A051151
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-6, 1;
72, -18, 1;
-1296, 396, -36, 1;
31104, -10800, 1260, -60, 1;
-933120, 355104, -48600, 3060, -90, 1;
...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence is:
A047058(n-1).
Row sums (signed triangle):
A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008542(n).
A053103
a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).
Original entry on oeis.org
1, 16, 352, 9856, 335104, 13404160, 616591360, 32062750720, 1859639541760, 119016930672640, 8331185147084800, 633170071178444800, 51919945836632473600, 4568955233623657676800, 429481791960623821619200
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100,
A053101,
A053102, this sequence (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ G. C. Greubel, Aug 16 2018
A113133
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 6.
Original entry on oeis.org
1, 1, 6, 72, 1332, 33264, 1040256, 38926656, 1692061488, 83688313536, 4638320578944, 284692939944192, 19169186341398912, 1404935464314299904, 111348880778746460160, 9489756817594314049536, 865470841829802331976448
Offset: 0
a(2) = 6.
a(3) = 2*6^2 = 72.
a(4) = 6*3*72 + 1*6*6 = 1332.
a(5) = 6*4*1332 + 1*6*72 + 2*72*6 = 33264.
a(6) = 6*5*33264 + 1*6*1332 + 2*72*72 + 3*1332*6 = 1040256.
G.f.: A(x) = 1 + x + 6*x^2 + 72*x^3 + 1332*x^4 + 33264*x^5
+...
= x/series_reversion(x + x^2 + 7*x^3 + 91*x^4 + 1729*x^5
+...).
-
x=6;a[0]=a[1]=1;a[2]=x;a[3]=2x^2;a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}];Table[a[n], {n, 0, 17}](Robert G. Wilson v)
-
a(n)=Vec(x/serreverse(x*Ser(vector(n+1,k,if(k==1,1, prod(j=0,k-2,6*j+1))))))[n+1]
-
a(n,x=6)=if(n<0,0,if(n==0 || n==1,1,if(n==2,x,if(n==3,2*x^2,x*(n-1)*a(n-1)+sum(j=2,n-2,(j-1)*a(j)*a(n-j))))))
A227544
Expansion of e.g.f. 1/(1 - sin(6*x))^(1/6).
Original entry on oeis.org
1, 1, 7, 55, 721, 11761, 240247, 5801095, 162512161, 5171130721, 184337942887, 7275081518935, 314918762166001, 14834964193292881, 755507853144691927, 41362173671901329575, 2422478811455080626241, 151132171549872325122241, 10006051653759338150151367, 700695219796759105368529015
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 55*x^3/3! + 721*x^4/4! + 11761*x^5/5! + ...
where A(x)^3 = 1 + 3*x + 27*x^2/2! + 297*x^3/3! + 4617*x^4/4! + 87723*x^5/5! + ...
and 1/A(x)^3 = 1 - 3*x - 9*x^2/2! + 27*x^3/3! + 81*x^4/4! - 243*x^5/5! + ...
which illustrates 1/A(x)^3 = cos(3*x) - sin(3*x).
O.g.f.: 1/(1-x - 6*1*1*x^2/(1-7*x - 6*2*4*x^2/(1-13*x - 6*3*7*x^2/(1-19*x - 6*4*10*x^2/(1-25*x - 6*5*13*x^2/(1-...)))))), a continued fraction.
-
CoefficientList[Series[1/(1-Sin[6*x])^(1/6), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jan 03 2014 *)
-
{a(n)=local(X=x+x*O(x^n)); n!*polcoeff((cos(3*X)-sin(3*X))^(-1/3), n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=exp(intformal(A^3/subst(A^3, x, -x)))); n!*polcoeff(A, n)}
for(n=0,20,print1(a(n),", "))
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a008542(n) = prod(k=0, n-1, 6*k+1);
a(n) = sum(k=0, n, a008542(k)*(6*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
A053102
a(n) = ((6*n+9)(!^6))/9(!^6), related to A034723 (((6*n+3)(!^6))/3 sextic, or 6-factorials).
Original entry on oeis.org
1, 15, 315, 8505, 280665, 10945935, 492567075, 25120920825, 1431892487025, 90209226682575, 6224436641097675, 466832748082325625, 37813452594668375625, 3289770375736148679375, 305948644943461827181875
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100,
A053101, this sequence,
A053103 (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(15/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(15/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(15/6))) \\ G. C. Greubel, Aug 15 2018
A144773
10-fold factorials: Product_{k=0..n-1} (10*k+1).
Original entry on oeis.org
1, 1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 0
Essentially a duplicate of
A045757.
-
R:=PowerSeriesRing(Rationals(), 15); Coefficients(R!(Laplace( (1-10*x)^(-1/10) ))); // G. C. Greubel, Mar 03 2020
-
G(x):=(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
b = 10; Table[FullSimplify[b^n*Gamma[n + 1/b]/Gamma[1/b]], {n, 0, 14}] (* Michael De Vlieger, Sep 14 2016 *)
Join[{1},FoldList[Times,10 Range[0,15]+1]] (* Harvey P. Dale, Oct 24 2022 *)
-
Vec(serlaplace( (1-10*x)^(-1/10) +O('x^15) )) \\ G. C. Greubel, Mar 03 2020
-
[10^n*rising_factorial(1/10,n) for n in (0..15)] # G. C. Greubel, Mar 03 2020
A088996
Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 7, 6;
0, 6, 29, 46, 24;
0, 24, 146, 329, 326, 120;
0, 120, 874, 2521, 3604, 2556, 720;
0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
...
-
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
[A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
A347014
Expansion of e.g.f.: exp(x) / (1 - 6*x)^(1/6).
Original entry on oeis.org
1, 2, 10, 116, 2140, 52856, 1627192, 59930480, 2568599056, 125553289760, 6892279877536, 419788155021632, 28090704069553600, 2048487353985408896, 161687913401407530880, 13733087614786273308416, 1248892148354210466595072, 121073054127693143488709120
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..17); # Alois P. Heinz, Aug 10 2021
-
nmax = 17; CoefficientList[Series[Exp[x]/(1 - 6 x)^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 17}]
Table[HypergeometricU[1/6, n + 7/6, 1/6]/6^(1/6), {n, 0, 17}]
-
a[n]:=if n<2 then n+1 else (6*n-4)*a[n-1]-6*(n-1)*a[n-2];
makelist(a[n],n,0,50); /* Tani Akinari, Sep 08 2023 */
Comments