cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 66 results. Next

A243883 Numerator of circle radius r(n) at constant unit length sagitta and chord length = n.

Original entry on oeis.org

5, 1, 13, 5, 29, 5, 53, 17, 85, 13, 125, 37, 173, 25, 229, 65, 293, 41, 365, 101, 445, 61, 533, 145, 629, 85, 733, 197, 845, 113, 965, 257, 1093, 145, 1229, 325, 1373, 181, 1525, 401, 1685, 221, 1853, 485, 2029, 265, 2213, 577, 2405, 313, 2605, 677, 2813, 365, 3029
Offset: 1

Views

Author

Kival Ngaokrajang, Jun 13 2014

Keywords

Comments

Denominator of circle radius r(n) is A143025(n+2). The integral radius appearing at n = 2, 6, 10, 14, ..., = 1, 5, 13, 25, ..., respectively which is A001844(n/4 - 1/2). Floor (r(n)) = A001971(n). For the case of sagitta = n and chord length = 1, the numerator and the denominator will be A053755(n) and A008590(n) respectively. See illustration in links.

Crossrefs

Programs

  • PARI
    a(n) = numerator(n^2/8+1/2);

Formula

a(n) = numerator(n^2/8 + 1/2).
Empirical g.f.: -x*(x^11 +5*x^10 +x^9 +13*x^8 +2*x^7 +14*x^6 +2*x^5 +14*x^4 +5*x^3 +13*x^2 +x +5) / ((x -1)^3*(x +1)^3*(x^2 +1)^3). - Colin Barker, Jan 17 2015

A267958 4 times A042965.

Original entry on oeis.org

0, 4, 12, 16, 20, 28, 32, 36, 44, 48, 52, 60, 64, 68, 76, 80, 84, 92, 96, 100, 108, 112, 116, 124, 128, 132, 140, 144, 148, 156, 160, 164, 172, 176, 180, 188, 192, 196, 204, 208, 212, 220, 224, 228, 236, 240, 244, 252, 256, 260, 268, 272, 276, 284, 288, 292, 300, 304
Offset: 1

Views

Author

Matthew Burch, Jan 22 2016

Keywords

Comments

Ordered list of differences between even squares.

Examples

			(2*0)^2 - (2*0)^2 = 0,
(2*1)^2 - (2*0)^2 = 4,
(2*2)^2 - (2*1)^2 = 12,
(2*2)^2 - (2*0)^2 = 16,
(2*3)^2 - (2*2)^2 = 20,
...
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 0 elif n = 2 then 4 elif n = 3 then 12 else a(floor((1/2)*n)) + a(1+ceil((1/2)*n)) end if; end proc:
    seq(a(n), n = 1..50); # Peter Bala, Aug 03 2022
  • Python
    def DifferenceOfEvenSquares(maximumBound):
        sequence = set([0])
        for x in range(0, maximumBound+1, 4):
            if x % 16 != 8:
                sequence.add(x)
        print(sorted(sequence))

Formula

Numbers of the form (2m)^2 - (2n)^2, sorted.
From Chai Wah Wu, Sep 01 2024: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: 4*x^2*(x + 1)^2/(x^4 - x^3 - x + 1). (End)

A277780 a(n) is the least k > n such that n*k^2 is a cube.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 27, 72, 80, 88, 96, 104, 112, 120, 54, 136, 144, 152, 160, 168, 176, 184, 81, 200, 208, 64, 224, 232, 240, 248, 108, 264, 272, 280, 288, 296, 304, 312, 135, 328, 336, 344, 352, 360, 368, 376, 162, 392, 400, 408, 416, 424, 128, 440
Offset: 1

Views

Author

Peter Kagey, Oct 30 2016

Keywords

Comments

a(n) is bounded above by 8*n (A008590) because n*(8*n)^2 = (4*n)^3.
If and only if n is cubefree, a(n) = 8n. - David A. Corneth, Nov 01 2016
Theorem: If n = q*m^3 with q cubefree then k = q*(m+1)^3. - Hartmut F. W. Hoft, Nov 02 2016
Proof: let q have u distinct prime divisors p_i. Then q = Product_{i=1..u}(p_i^e_i) where e_i > 0 since p_i|q and e_i < 3 since q is cubefree. Therefore, e_i = 1 or e_i = 2. This yields q|k, i.e., q*t = k. Now for n*k^2 = q*m^3*q^2*t^2 = (q*m)^3 * t^2 to be a cube, t must be a cube. Now, k > n, so q*t/(q*m^3) = t/m^3. The least cube > m^3 is (m+1)^3 so k = q*(m+1)^3 which completes the proof. - David A. Corneth, Nov 03 2016

Examples

			a(24) = 81  because 24 *  81^2 =  54^3;
a(25) = 200 because 25 * 200^2 = 100^3;
a(26) = 208 because 26 * 208^2 = 104^3;
a(27) = 64  because 27 *  64^2 =  48^3.
The cubefree part of 144 is 18. The cubefull part of 144 is 8 = 2^3. Therefore, a(144) = 18 * 3^3 = 486. - _David A. Corneth_, Nov 01 2016
		

Crossrefs

Programs

  • Mathematica
    Table[k = n + 1; While[! IntegerQ[(n k^2)^(1/3)], k++]; k, {n, 55}] (* Michael De Vlieger, Nov 04 2016 *)
  • PARI
    a(n) = {my(k = n+1); while (!ispower(n*k^2, 3), k++); k;} \\ Michel Marcus, Oct 31 2016
    
  • PARI
    a(n) = {my(f = factor(n)); f[, 2] = f[, 2]%3; f=factorback(f); n = sqrtnint(n/f,3); (n+1)^3 * f} \\ David A. Corneth, Nov 01 2016

Formula

a(n) = A050985(n) * A000578(1+A048766(A008834(n))). [Formula given in comments expressed with A-numbers] - Antti Karttunen, Nov 02 2016.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + (3*zeta(4) + 3*zeta(5) + zeta(6))/zeta(3) = 7.13539675963975495073... . - Amiram Eldar, Feb 17 2024

A317095 a(n) = 40*n.

Original entry on oeis.org

0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
Offset: 0

Views

Author

Felix Fröhlich, Sep 07 2018

Keywords

Comments

a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)

Crossrefs

Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.

Programs

  • Mathematica
    Table[40 n, {n, 0, 50}] (* or *)
    LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
    CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
  • PARI
    a(n) = 40*n
    
  • PARI
    a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
    
  • PARI
    concat(0, Vec(40*x/(1-x)^2 + O(x^60)))

Formula

O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).

A361692 a(n) = 17*n - 1.

Original entry on oeis.org

16, 33, 50, 67, 84, 101, 118, 135, 152, 169, 186, 203, 220, 237, 254, 271, 288, 305, 322, 339, 356, 373, 390, 407, 424, 441, 458, 475, 492, 509, 526, 543, 560, 577, 594, 611, 628, 645, 662, 679, 696, 713, 730, 747, 764, 781, 798, 815, 832, 849, 866, 883, 900, 917, 934, 951, 968, 985, 1002, 1019
Offset: 1

Views

Author

Leo Tavares, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    17*Range[100] - 1 (* Paolo Xausa, Aug 30 2024 *)
    LinearRecurrence[{2,-1},{16,33},90] (* Harvey P. Dale, Jun 03 2025 *)

Formula

a(n) = 17*n - 1 = A008599(n) - 1.
a(n) = 2*A008590(n) + n - 1.
a(n) = A008590(n) + A017257(n-1).
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(16 + x)/(x - 1)^2.
E.g.f.: exp(x)*(17*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A181390 Absolute difference between (sum of previous terms) and (n-th-odd square) with a(1) = 1.

Original entry on oeis.org

1, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{lst={1}},Do[AppendTo[lst,Abs[Total[lst]-n^2]],{n,1,111,2}];lst] (* or *) Join[{1},LinearRecurrence[{2,-1},{0,8},60]] (* Harvey P. Dale, Aug 23 2012 *)
    ad[{t_,n_,a_}]:=Module[{c=Abs[t-(2n-1)^2]},{t+c,n+1,c}]; NestList[ad,{1,1,1},60][[All,3]] (* or  *) Join[{1}, NestList[8 + # &, 0, 60]] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    a(n)=if(n>1,8*n-8,1) \\ Charles R Greathouse IV, Jul 31 2013

Formula

a(n) = 8*(n-2) = A008590(n-2), n>1. - R. J. Mathar, Oct 18 2010
G.f.: x*(1 - 2*x + 9*x^2)/(-1 + x)^2. -Alexander R. Povolotsky, Oct 18 2010
a(1)=1, a(2)=0, a(3)=8, a(n)=2*a(n-1)-a(n-2). -Harvey P. Dale, Aug 23 2012
E.g.f.: 16 + 9*x + 8*exp(x)*(x - 2). - Stefano Spezia, Apr 03 2023

Extensions

Adapted g.f. to the offset from Bruno Berselli, Aug 01 2013

A236203 Interleave A005563(n), A028347(n).

Original entry on oeis.org

0, 0, 3, 5, 8, 12, 15, 21, 24, 32, 35, 45, 48, 60, 63, 77, 80, 96, 99, 117, 120, 140, 143, 165, 168, 192, 195, 221, 224, 252, 255, 285, 288, 320, 323, 357, 360, 396, 399, 437, 440, 480, 483, 525, 528, 572, 575, 621, 624, 672, 675, 725, 728, 780, 783, 837, 840, 896
Offset: 2

Views

Author

Paul Curtz, Jan 20 2014

Keywords

Comments

A175628 gives the numerators of interleaved Lyman and Balmer series, i.e., A005563(n)/A000290(n+1) and A061037(n+2)/A061038(n+2).
Difference table of a(n):
-1, -3, 0, 0, 3, 5, 8, 12, 15, 21, 24, ...
-2, 3, 0, 3, 2, 3, 4, 3, 6, 3, 8, ...
5, -3, 3, -1, 1, 1, -1, 3, -3, 5, -5, ...
-8, 6, -4, 2, 0, -2, 4, -6, 8, -10, 12, ...
14, -10, 6, -2, -2, 6, -10, 14, -18, 22, -26, ...
-24, 16, -8, 0, 8, -16, 24, -32, 40, -48, 56, ... .
a(n+2) gives the numerators of 0/1, 0/16, 3/4, 5/36, 8/9, 12/64, 15/16, 21/100, 24/25, 32/144, ... . The denominators are A097362(n+1)^2. (Compare A097362 to A029578.)
Note the particular distribution of a(-n). Example:
a(n-9) = 12,15, 5,8, 0,3, -3,0, -4,-1, -3,0, 0,3, 5,8, 12,15, ... .
a(2n) + a(2n+1) = a(-2n-1) + a(-2n-2) = -4,0,8,20,36,56,80,... = 4*A000096(n-1).
a(2n) + a(2n-1) = a(-2n) + a(-2n-1) = -5,-3,3,13,... = A001105(n) - A010716(n).

Crossrefs

Programs

  • GAP
    List([2..60], n-> (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 ); # G. C. Greubel, Dec 04 2019
  • Magma
    [(2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8: n in [2..60]]; // Vincenzo Librandi, Jul 27 2014
    
  • Maple
    seq( (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8, n=2..60); # G. C. Greubel, Dec 04 2019
  • Mathematica
    CoefficientList[Series[x^2(3x^2-2x-3)/((x-1)^3(x+1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 27 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,0,3,5,8},60] (* Harvey P. Dale, Aug 30 2018 *)
  • PARI
    concat([0,0], Vec(x^4*(3*x^2-2*x-3)/((x-1)^3*(x+1)^2) + O(x^60))) \\ Colin Barker, Jan 26 2014
    
  • Sage
    [(2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 for n in (2..60)] # G. C. Greubel, Dec 04 2019
    

Formula

a(n+2) = (period 8: repeat 1, 16, 1, 1, 1, 4, 1, 1)*A175628(n+1).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n+4) - a(n-4) = 0, 8, 8, ... = A168397.
From Colin Barker, Jan 26 2014: (Start)
a(n) = (n^2 -4)/4 for n even, a(n) = (n^2 +2*n -15)/4 for n odd.
G.f.: x^4*(3 + 2*x - 3*x^2)/ ((1-x)^3*(1+x)^2). (End)
a(n) = (2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8. - Luce ETIENNE, Jul 26 2014
Sum_{n>=4} (-1)^n/a(n) = 11/48. - Amiram Eldar, Aug 21 2022

Extensions

More terms from Colin Barker, Jan 26 2014

A239794 5*n^2 + 4*n - 15.

Original entry on oeis.org

-6, 13, 42, 81, 130, 189, 258, 337, 426, 525, 634, 753, 882, 1021, 1170, 1329, 1498, 1677, 1866, 2065, 2274, 2493, 2722, 2961, 3210, 3469, 3738, 4017, 4306, 4605, 4914, 5233, 5562, 5901, 6250, 6609, 6978, 7357, 7746, 8145, 8554, 8973, 9402, 9841, 10290
Offset: 1

Views

Author

Katherine Guo, Mar 26 2014

Keywords

Comments

Follows the integer values from 1 on the quadratic equation 5*x^2 + 4*n - 15, this is the case x=n.

Examples

			For n=3, a(3) = 5*3^2 + 4*3 - 15 = 42; for n=6, a(6) = 5*6^2 + 4*6 - 15 = 189.
		

Crossrefs

Programs

  • Magma
    [5*n^2+4*n-15: n in [1..50]];
    
  • Mathematica
    Table[5 n^2 + 4 n - 15, {n, 50}]
    CoefficientList[Series[(6 - 31 x + 15 x^2)/(x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
    LinearRecurrence[{3,-3,1},{-6,13,42},50] (* Harvey P. Dale, May 30 2025 *)
  • PARI
    a(n)=5*n^2+4*n-15 \\ Charles R Greathouse IV, Jun 17 2017

Formula

From Bruno Berselli, Mar 27 2014: (Start)
G.f.: -x*(6 - 31*x + 15*x^2)/(1 - x)^3.
a(n+1) - a(n) = A017377(n).
a(n) - a(-n) = A008590(n). (End)

A247555 A permutation of the nonnegative numbers: a(4n) = 8n, a(4n+1) = 2n + 1, a(4n+2) = 4n + 2, a(4n+3) = 8n + 4.

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 6, 12, 16, 5, 10, 20, 24, 7, 14, 28, 32, 9, 18, 36, 40, 11, 22, 44, 48, 13, 26, 52, 56, 15, 30, 60, 64, 17, 34, 68, 72, 19, 38, 76, 80, 21, 42, 84, 88, 23, 46, 92, 96, 25, 50, 100, 104, 27, 54, 108, 112, 29, 58, 116, 120
Offset: 0

Views

Author

Paul Curtz, Sep 19 2014

Keywords

Comments

A permutation of the nonnegative integers.

Crossrefs

Programs

  • Magma
    &cat[[4*(i-1),i,2*i,4*i]: i in [1..50 by 2]]; // Bruno Berselli, Sep 19 2014
  • Mathematica
    a[n_]:=Switch[Mod[n,4],0,2 n,1,(n+1)/2,2,n,3,2 n-2]; Table[a[n],{n,0,60}] (* Jean-François Alcover, Oct 09 2014 *)
    LinearRecurrence[{0,0,0,2,0,0,0,-1}, {0,1,2,4,8,3,6,12}, 50] (* G. C. Greubel, May 01 2018 *)
  • PARI
    Vec(x*(4*x^6+2*x^5+x^4+8*x^3+4*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100)) \\ Colin Barker, Sep 19 2014
    

Formula

a(n) = a(n-4) + a(n-8) - a(n-12).
a(n) = 2*a(n-4) - a(n-8). - Colin Barker, Sep 19 2014
G.f.: x*(4*x^6 + 2*x^5 + x^4 + 8*x^3 + 4*x^2 + 2*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 19 2014
a(n) = (11*n-3+(n+3)*(-1)^n+(4*n-1+(-1)^n)*cos(n*Pi/2)+2*(9-3*n+4(-1)^n)* sin(n*Pi/2))/8. - Wesley Ivan Hurt, May 07 2021

A329549 Numbers 4*k such that 1 is the last integer obtained when 4*k is successively divided by its divisors in increasing order.

Original entry on oeis.org

8, 24, 40, 56, 64, 120, 144, 280, 320, 448, 704, 720, 832, 1008, 1024, 1152, 2240, 3200, 4928, 5040, 5760, 5824, 6272, 8064, 9152, 10368, 11264, 13312, 17408, 19456, 22400, 23552, 29696, 31744, 32768, 35200, 40320, 41600, 51200, 51840, 64064, 68992, 72576, 81536, 100352, 114048
Offset: 1

Views

Author

David A. Corneth, Nov 16 2019

Keywords

Comments

At sequence A076933, the question is asked: "What is the longest string of ones in this sequence?" As A076933(4*n) is rarely 1, such a string is not very long. The longest starting below 4*10^8 has length 6 and starts at 141. Checking multiples of 4 may help in finding longer such strings.
Terms are also a multiple of 8. Proof: If m = 8*k + 4 then its divisors are 1, 2, 4 (and maybe 3). After dividing by 4 we have a fraction with denominator 2. Before that we did not see 1.

Examples

			The divisors of 8 are 1, 2, 4 and 8. Dividing from left to right gives 8/1 = 8, 8/2 = 4, 4/4 = 1, and then 1/8 isn't an integer so as the last integer we see is 1, 8 is in the sequence.
		

Crossrefs

Cf. A076933, A240694 (partial products of divisors of n).
Subsequence of A008586 (multiples of 4) and of A008590 (multiples of 8).
Previous Showing 51-60 of 66 results. Next