cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 112 results. Next

A059896 The set of Fermi-Dirac factors of A(n,k) is the union of the Fermi-Dirac factors of n and k. Symmetric square array read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 8, 3, 8, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 24, 5, 24, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 27, 8, 35, 6, 35, 8, 27, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Every positive integer, m, is the product of a unique subset, S(m), of the numbers listed in A050376 (primes, squares of primes etc.) The Fermi-Dirac factors of m are the members of S(m). So T(n,k) is the product of the members of (S(n) U S(k)).
Old name: Table a(i,j) = product prime(k)^(Ei(k) OR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; OR is the bitwise operation on binary representation of the exponents.
Analogous to LCM, with OR replacing MAX.
A003418-analog seems to be A066616. - Antti Karttunen, Apr 12 2017
Considered as a binary operation, the result is the lowest common multiple of the squarefree parts of its operands multiplied by the square of the operation's result when applied to the square roots of the square parts of its operands. - Peter Munn, Mar 02 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 OR 3) * 3^(3 OR 5) = 2^7*3^7 = 279936.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  2,  6,  8, 10,  6, 14,  8,  18,  10,  22,  24
   3,  6,  3, 12, 15,  6, 21, 24,  27,  30,  33,  12
   4,  8, 12,  4, 20, 24, 28,  8,  36,  40,  44,  12
   5, 10, 15, 20,  5, 30, 35, 40,  45,  10,  55,  60
   6,  6,  6, 24, 30,  6, 42, 24,  54,  30,  66,  24
   7, 14, 21, 28, 35, 42,  7, 56,  63,  70,  77,  84
   8,  8, 24,  8, 40, 24, 56,  8,  72,  40,  88,  24
   9, 18, 27, 36, 45, 54, 63, 72,   9,  90,  99, 108
  10, 10, 30, 40, 10, 30, 70, 40,  90,  10, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,  11, 132
  12, 24, 12, 12, 60, 24, 84, 24, 108, 120, 132,  12
		

Crossrefs

Sequences used in a definition of this sequence: A003986, A000188/A007913/A008833, A052330/A052331.
Has simple/very significant relationships with A003961, A059895/A059897, A225546, A267116.

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059895(x,y) * A059897(x,y).
A(x,y) * A059895(x,y) = x*y.
(End).
From Peter Munn, Mar 02 2022: (Start)
OR denotes the bitwise operation (A003986).
Limited multiplicative property: if gcd(n_1*k_1, n_2*k_2) = 1 then A(n_1*n_2, k_1*k_2) = A(n_1, k_1) * A(n_2, k_2).
For prime p, A(p^e_1, p^e_2) = p^(e_1 OR e_2).
A(n, A(m, k)) = A(A(n, m), k).
A(n, k) = A(k, n).
A(n, 1) = A(n, n) = n.
A(n^2, k^2) = A(n, k)^2.
A(n, k) = A(A007913(n), A007913(k)) * A(A008833(n), A008833(k)) = lcm(A007913(n), A007913(k)) * A(A000188(n), A000188(k))^2.
A007947(A(n, k)) = A007947(n*k).
Isomorphism: A(A052330(n), A052330(k)) = A052330(n OR k).
Equivalently, A(n, k) = A052330(A052331(n) OR A052331(k)).
A(A003961(n), A003961(k)) = A003961(A(n, k)).
A(A225546(n), A225546(k)) = A225546(A(n, k)).
(End)

Extensions

New name from Peter Munn, Mar 02 2022

A323308 The number of exponential semiproper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 10 2019

Keywords

Comments

An exponential semiproper divisor of n is a divisor d such that rad(d) = rad(n) and gcd(d/rad(n), n/d) = 1, where rad(n) is the largest squarefree divisor of n (A007947).
a(n) is also the number of divisors of n that are squares of squarefree numbers (A062503). - Amiram Eldar, Oct 08 2022
a(n) is also the number of unitary divisors of n that are powerful (A001694). - Amiram Eldar, Feb 18 2023
The smallest integer that has exactly 2^n exponential semiproper divisors is A061742(n). - Bernard Schott, Feb 20 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e==1, 1, 2]; a[1]=1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = min(f[k,2], 2); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jan 11 2019

Formula

a(n) = A034444(n/A007947(n)).
Multiplicative with a(p^e) = 1 for e = 1 and 2 otherwise.
Asymptotic mean: Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 15/Pi^2 = 1.5198177546... (A082020). - Amiram Eldar, Nov 08 2020
a(n) = Sum_{d^2|n} mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
Dirichlet g.f.: zeta(s) * zeta(2*s) / zeta(4*s). - Werner Schulte, Dec 29 2022
a(n) = A034444(A000188(n)) = A034444(A008833(n)) (the number of unitary divisors of the largest square dividing n). - Amiram Eldar, Sep 03 2023
a(n) = A034444(A057521(n)) (the number of unitary divisors of the powerful part of n). - Amiram Eldar, Oct 03 2023

A056624 Number of unitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Unitary analog of A046951.
The number of exponential divisors (A322791) of n that are cubefree (A004709). - Amiram Eldar, Jun 03 2025

Examples

			n=256, it has 5 square divisors of which only 2,{1,256} are unitary, 3 divisors are not.
n=124 has 2 (1 and 4) square divisors, both of them unitary a(124) = 2.
n=108 has 12 divisors, 4 square divisors: {1,4,9,36} of which 1 and 4 are unitary, 9 and 36 are not. So a(108)=2. The largest unitary square divisor of 108 is 4 with 1 prime divisor so a(108) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    isA056624 := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d and igcd(n/d^2, d) = 1:
    a := n -> nops(select(k -> isA056624(n, k), [seq(1..n)])):  # Peter Luschny, Jun 13 2025
  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, issquare(d))); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from sympy import factorint
    def A056624(n): return 1<Chai Wah Wu, Aug 03 2024
    
  • Python
    def is_A056624(n, d): return gcd(n, d) == d and gcd(n//d, d) == d and gcd(n//(d*d), d) == 1
    def a(n): return len([k for k in range(1, n+1) if is_A056624(n, k)])
    print([a(n) for n in range(1, 106)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (define (A056624 n) (if (= 1 n) n (* (A000079 (A059841 (A067029 n))) (A056624 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = 2^r, where r is the number of prime factors of the largest unitary square divisor of n.
Multiplicative with a(p^e) = 2^(1-(e mod 2)). - Vladeta Jovovic, Dec 13 2002
Dirichlet g.f.: zeta(s)*zeta(2*s)/zeta(3*s). - Werner Schulte, Apr 03 2018
Sum_{k=1..n} a(k) ~ n*Pi^2/(6*zeta(3)) + sqrt(n)*zeta(1/2)/zeta(3/2). - Vaclav Kotesovec, Feb 07 2019
a(n) = 2^A162641(n). - Amiram Eldar, Sep 26 2022
a(n) = A034444(A350388(n)). - Amiram Eldar, Sep 09 2023

Extensions

More terms from Vladeta Jovovic, Dec 13 2002

A293442 Multiplicative with a(p^e) = A019565(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 10, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 20, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Comments

From Peter Munn, Apr 06 2021: (Start)
a(n) is determined by the prime signature of n.
Compare with the multiplicative, self-inverse A225546, which also maps 2^e to the squarefree number A019565(e). However, this sequence maps p^e to the same squarefree number for every prime p, whereas A225546 maps the e-th power of progressively larger primes to progressively greater powers of A019565(e).
Both sequences map powers of squarefree numbers to powers of squarefree numbers.
(End)

Crossrefs

Sequences used in a definition of this sequence: A000188, A003961, A019565, A028234, A059895, A067029, A162642.
Sequences with related definitions: A225546, A293443, A293444.
Cf. also A293214.
Sequences used to express relationship between terms of this sequence: A006519, A007913, A008833, A064989, A334747.
Sequences related via this sequence: (A001222, A048675, A064547), (A007814, A162642), (A087207, A267116), (A248663, A268387).

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Apply[Times, Prime@ Flatten@ Position[Reverse@ IntegerDigits[Last@ #, 2], 1]] * f[n/Apply[Power, #]] &@ FactorInteger[n][[1]]]; Array[f, 105] (* Michael De Vlieger, Oct 31 2017 *)

Formula

a(1) = 1; for n > 1, a(n) = A019565(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
a(a(n)) = A293444(n).
A048675(a(n)) = A001222(n).
A001222(a(n)) = A064547(n) = A048675(A293444(n)).
A007814(a(n)) = A162642(n).
A087207(a(n)) = A267116(n).
A248663(a(n)) = A268387(n).
From Peter Munn, Mar 14 2021: (Start)
Alternative definition: a(1) = 1; a(2) = 2; a(n^2) = A003961(a(n)); a(A003961(n)) = a(n); if A059895(n, k) = 1, a(n*k) = a(n) * a(k).
For n >= 3, a(n) < n.
a(2n) = A334747(a(A006519(n))) * a(n/A006519(n)), where A006519(n) is the largest power of 2 dividing n.
a(2n+1) = a(A064989(2n+1)).
a(n) = a(A007913(n)) * a(A008833(n)) = 2^A162642(n) * A003961(a(A000188(n))).
(End)

A008835 Largest 4th power dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 81
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [ seq( expand(nthpow(i,4)),i=1..200) ];
  • Mathematica
    Max@ Select[Divisors@ #, IntegerQ@ Power[#, 1/4] &] & /@ Range@ 81 (* Michael De Vlieger, Mar 18 2015 *)
    f[p_, e_] := p^(e - Mod[e, 4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 15 2023 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] = 4*(f[i,2]\4);); factorback(f);} \\ Michel Marcus, Mar 16 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A008835(n): return prod(p**(e&-4) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024

Formula

a(n) = A000188(A000188(n))^4.
Multiplicative with a(p^e) = p^(4[e/4]). - Mitch Harris, Apr 19 2005
Dirichlet g.f.: zeta(s) * zeta(4s-4) / zeta(4s). - Álvar Ibeas, Feb 12 2015
Sum_{k=1..n} a(k) ~ zeta(5/4) * n^(5/4) / (5*zeta(5)) - 45*n/Pi^4. - Vaclav Kotesovec, Feb 03 2019
a(n) = n/A053165(n). - Amiram Eldar, Aug 15 2023
a(n) = A053164(n)^4. - Amiram Eldar, Sep 01 2024

Extensions

Entry improved by comments from Henry Bottomley, Feb 29 2000

A055653 Sum of phi(d) [A000010] over all unitary divisors d of n (that is, gcd(d,n/d) = 1).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 23, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 67, 51, 69, 70, 71, 35, 73
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Phi-summation over d-s if runs over all divisors is n, so these values do not exceed n. Compare also other "Phi-summations" like A053570, A053571, or distinct primes dividing n, etc.
a(n) is also the number of solutions of x^(k+1)=x mod n for some k>=1. - Steven Finch, Apr 11 2006
An integer a is called regular (mod n) if there is an integer x such that a^2 x == a (mod n). Then a(n) is also the number of regular integers a (mod n) such that 1 <= a <= n. - Laszlo Toth, Sep 04 2008
Equals row sums of triangle A157361 and inverse Mobius transform of A114810. - Gary W. Adamson, Feb 28 2009
a(m) = m iff m is squarefree, a(A005117(n)) = A005117(n). - Reinhard Zumkeller, Mar 11 2012
Apostol & Tóth call this ϱ(n), i.e., varrho(n). - Charles R Greathouse IV, Apr 23 2013

Examples

			n=1260 has 36 divisors of which 16 are unitary ones: {1,4,5,7,9,20,28,35,36,45,63,140,180,252,315,1260}.
EulerPhi values of these divisors are: {1,2,4,6,6,8,12,24,12,24,36,48,48,72,144,288}.
The sum is 735, thus a(1260)=735.
Or, 1260=2^2*3^2*5*7, thus a(1260) = (1 + 2^2 - 2)*(1 + 3^2 - 3)*(1 + 5 - 5^0)*(1 + 7 - 7^0) = 735.
		

References

  • J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5. [From Laszlo Toth, Sep 04 2008]
  • J. Morgado, A property of the Euler phi-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.

Crossrefs

Programs

  • Haskell
    a055653 = sum . map a000010 . a077610_row
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A055653 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]-ifactors(n)[ 2 ][ i ] [ 1 ]^(ifactors(n)[ 2 ] [ i ] [ 2 ]-1)): od: RETURN(ans) end:
  • Mathematica
    a[n_] := Total[EulerPhi[Select[Divisors[n], GCD[#, n/#] == 1 &]]]; Array[a, 73] (* Jean-François Alcover, May 03 2011 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ Charles R Greathouse IV, Feb 19 2013, corrected by Antti Karttunen, Sep 03 2018
    
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^f[i,2]-f[i,1]^(f[i,2]-1)+1) \\ Charles R Greathouse IV, Feb 19 2013

Formula

If n = product p_i^e_i, a(n) = product (1+p_i^e_i-p_i^(e_i-1)). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*product_{primes p} (1+p^(-2s)-p^(1-2s)-p^(-s)). - R. J. Mathar, Oct 24 2011
Dirichlet convolution square of A318661(n)/A318662(n). - Antti Karttunen, Sep 03 2018
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.535896... - Vaclav Kotesovec, Dec 17 2019

A055773 a(n) = Product_{p in P_n} where P_n = {p prime, n/2 < p <= n }.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 0

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Comments

Old name: Product of primes p for which p divides n! but p^2 does not (i.e. ord_p(n!)=1). - Dion Gijswijt (gijswijt(AT)science.uva.nl), Jan 07 2007
Squarefree part of n! divided by gcd(Q,F), where Q is the largest square divisor and F is the squarefree part of n!. - Labos Elemer, Jul 12 2000
a(1) = 1, a(n) = n*a(n-1) if n is a prime else a(n) = least integer multiple of a(n-1)/n. - Amarnath Murthy, Apr 29 2004
Let P(i) denote the primorial number A034386(i). Then a(n) = P(n)/P(floor(n/2)). - Peter Luschny, Mar 05 2011
Letting H(n) = 1 + 1/2 + ... + 1/n denote the n-th harmonic number, it is known that a(n) is equal to the denominator (in lowest terms) of H(n)^2*n! for n >= 6 (see below example). - John M. Campbell, Mar 27 2016
For all n satisfying 6 <= n < 897, a(n) = A130087(n). - John M. Campbell, Mar 27 2016
It is also known that a(n) is equal to lcm^2(1, 2, ..., n)/gcd(lcm^2(1, 2, ..., n), n!). - John M. Campbell, Apr 04 2016

Examples

			n = 13, P_n = {7, 11, 13}, a(13) = 7*11*13 = 1001.
Letting n = 14, the denominator (in lowest terms) of H(n)^2*n! = 131803989435744/143 is a(14)=143. - _John M. Campbell_, Mar 27 2016
		

Crossrefs

Programs

  • Maple
    a := n -> mul(k,k=select(isprime,[$iquo(n,2)+1..n])); # Peter Luschny, Jun 20 2009
    A055773 := n -> numer(n!/iquo(n,2)!^4); # Peter Luschny, Jul 30 2011
  • Mathematica
    Table[Numerator[n!/Floor[n/2]!^4], {n, 0, 40}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    q=1;for(n=2,41,print1(q,",");q=if(isprime(n),q*n,q/gcd(q,n))) \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = k=1;forprime(p=nextprime(n\2+1),precprime(n),k=k*p);k \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = prod(i=primepi(n/2)+1,primepi(n),prime(i)) \\ John M. Campbell, Mar 27 2016
    
  • Python
    from math import prod
    from sympy import primerange
    def A055773(n): return prod(primerange((n>>1)+1,n+1)) # Chai Wah Wu, Apr 13 2024

Formula

a(n) = numerator(A056040(n)^2/n!).
a(n) = numerator(A056040(n)/floor(n/2)!^2).
a(n) = numerator(n!/floor(n/2)!^4). - Peter Luschny, Jul 30 2011
a(n) = product of primes p such that n/2 < p <= n. - Klaus Brockhaus, May 02 2004
a(n) = A055204(n)/A055230(n) = A055231(n!) = A007913(n!)/A055229(n!).
a(n) = Product_{i=pi(n/2)+1..pi(n)} prime(i), where pi denotes the prime counting function and prime(i) denotes the i-th prime number. - John M. Campbell, Mar 27 2016

Extensions

Entry revised by N. J. A. Sloane, Jan 07 2007
Simpler definition based on a comment of Klaus Brockhaus, set offset to 0 and prepended 1 to data. - Peter Luschny, Mar 09 2013

A335275 Numbers k such that the largest square dividing k is a unitary divisor of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2020

Keywords

Comments

Numbers k such that gcd(A008833(k), k/A008833(k)) = 1.
Numbers whose prime factorization contains exponents that are either 1 or even.
Numbers whose powerful part (A057521) is a square.
First differs from A220218 at n = 227: a(227) = 256 is not a term of A220218.
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465).
Complement of A295661. - Vaclav Kotesovec, Jul 07 2020
Differs from A096432 in having or not having 1, 256, 432, 648, 768, 1280, 1728, 1792, 2000, 2160, 2304,... - R. J. Mathar, Jul 22 2020
Equivalently, numbers k whose squarefree part (A007913) is a unitary divisor, or gcd(A007913(k), A008833(k)) = 1. - Amiram Eldar, Oct 09 2022

Examples

			12 is a term since the largest square dividing 12 is 4, and 4 and 12/4 = 3 are coprime.
		

Crossrefs

A000290, A138302 and A220218 are subsequences.

Programs

  • Mathematica
    seqQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # == 1 || EvenQ[#] &];  Select[Range[100], seqQ]
  • PARI
    isok(k) = my(d=k/core(k)); gcd(d, k/d) == 1; \\ Michel Marcus, Jul 07 2020

A055772 Square root of largest square dividing n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 24, 72, 720, 720, 1440, 1440, 10080, 30240, 120960, 120960, 725760, 725760, 7257600, 7257600, 79833600, 79833600, 958003200, 4790016000, 62270208000, 186810624000, 2615348736000, 2615348736000, 15692092416000
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Examples

			For n=6, 6! = 720 = 144*5 so a(6) = sqrt(144) = 12.
		

Crossrefs

Programs

  • Maple
    a:= proc(n)
    local r,F,t;
    r:= n!;
    F:= ifactors(r)[2];
    mul(t[1]^floor(t[2]/2),t=F)
    end proc:
    seq(a(n), n= 1 .. 100); # Robert Israel, Oct 19 2014
  • Mathematica
    Table[Last[Select[Sqrt[#]&/@Divisors[n!],IntegerQ]],{n,30}] (* Harvey P. Dale, Oct 08 2012 *)
    (Sqrt@Factorial@Range@30)/.Sqrt[]->1 (* _Morgan L. Owens, May 04 2016 *)
    f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Jul 26 2024 *)
  • PARI
    a(n)=core(n!,2)[2] \\ Charles R Greathouse IV, Apr 03 2012

Formula

a(n) = A000188(n!) = sqrt(A008833(n!)) = sqrt(A055071(n)).
n! = a(n)^2*A055204(n) = a(n)^2*A007913(n!).
n! = (A000188(n!)^2)*A055229(n!)*A055231(n!).
log(a(n)) ~ n*log(n)/2. - David Radcliffe, Oct 17 2014

A100044 Decimal expansion of Pi^2/9.

Original entry on oeis.org

1, 0, 9, 6, 6, 2, 2, 7, 1, 1, 2, 3, 2, 1, 5, 0, 9, 5, 7, 6, 4, 8, 2, 7, 6, 7, 7, 7, 7, 6, 4, 0, 1, 6, 7, 9, 2, 8, 1, 2, 6, 3, 3, 2, 6, 7, 4, 7, 1, 1, 9, 8, 9, 5, 8, 4, 9, 0, 3, 7, 2, 1, 5, 2, 9, 1, 3, 3, 3, 8, 3, 1, 3, 6, 0, 2, 1, 3, 3, 9, 1, 5, 8, 8, 9, 0, 8, 5, 9, 3, 3, 7, 4, 6, 5, 0, 5, 8, 0, 3, 5, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 31 2004

Keywords

Comments

The Dirichlet L-series for the principal character mod 6 (which is A120325 shifted left) evaluated at 2. - R. J. Mathar, Jul 20 2012
Equals the asymptotic mean of the abundancy index of the numbers coprime to 6 (A007310). - Amiram Eldar, May 12 2023

Examples

			1.096622711232150957648276777764...
		

References

  • F. Aubonnet, D. Guinin, and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/9, 10, 110][[1]] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    default(realprecision, 110); Pi^2/9 \\ G. C. Greubel, Feb 17 2017
    
  • Sage
    numerical_approx(pi^2/9, digits=120) # G. C. Greubel, Jun 02 2021

Formula

Equals 1 + (1/2)*(1/3)*(1/2) + (1/3)*(1*2)/(3*5)*(1/2)^2 + (1/4) *(1*2*3)/(3*5*7)*(1/2)^3 + .... [Jolley eq 277]
Equals 1/1^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 + 1/17^2 + .... - R. J. Mathar, Jul 20 2012
Equals 2*Sum_{n>=1} 1/(6*n*(3*n + (-1)^n - 3) - 3*(-1)^n + 5) = 2*Sum_{n>=1} 1/(2*A104777(n)). - Alexander R. Povolotsky, May 18 2014
Equals A019670^2. - Michel Marcus, May 19 2014
Equals 2*A086463 = 2*Sum_{n>=1} 1/A091999(n)^2, equivalent to the formula of 2012 above. - Alexander R. Povolotsky, May 20 2014
Equals 3F2(1,1,1; 3/2,2 ; 1/4), following from Clausen's formula of J. Reine Angew. Math 3 (1828) for squares of 2F1() as noted in A019670. - R. J. Mathar, Oct 16 2015
Equals Product_{n >= 3} prime(n)^2 / (prime(n)^2 - 1), Euler's prime product, excluding first two primes. - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=0..oo} log(x)/(x^6 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} A000120(k) * (2*k+1)/(k^2*(k+1)^2) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Equals Integral_{x=0..1} log(1+x+x^2)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
Equals Sum_{k>=1} A008833(k)/k^4. - Amiram Eldar, Jan 25 2024
Continued fraction expansion: 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n-1)*n^3/((5*n^2+6*n+2) - ... ))))). See A130549. - Peter Bala, Feb 16 2024
Equals Sum_{k >= 0} 1/((k + 1)*(2*k + 1)*binomial(2*k, k)). See Catalan, Section 21, equation 30. - Peter Bala, Aug 14 2024
Previous Showing 21-30 of 112 results. Next