cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A119468 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Product of Pascal's triangle A007318 and A119467. Row sums are A007051. Diagonal sums are A113225.
Variant of A080928, A115068 and A082137. - R. J. Mathar, Feb 09 2010
Matrix inverse of the Euler tangent triangle A081733. - Peter Luschny, Jul 18 2012
Central column: T(2*n,n) = A069723(n). - Peter Luschny, Jul 22 2012
Subtriangle of the triangle in A198792. - Philippe Deléham, Nov 10 2013

Examples

			Triangle begins
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    8,   16,   12,    4,    1;
   16,   40,   40,   20,    5,    1;
   32,   96,  120,   80,   30,    6,    1;
   64,  224,  336,  280,  140,   42,    7,   1;
  128,  512,  896,  896,  560,  224,   56,   8,  1;
  256, 1152, 2304, 2688, 2016, 1008,  336,  72,  9,  1;
  512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
		

Crossrefs

A082137 read as triangle with rows reversed.

Programs

  • Maple
    A119468_row := proc(n) local s,t,k;
      s := series(exp(z*x)/(1-tanh(x)),x,n+2);
      t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
    for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
    # Alternatively:
    T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
  • Mathematica
    A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
    Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    def p(n,x) :
      return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n))
    def A119468_row(n):
        x = R.gen()
        return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)]
    for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012

Formula

G.f.: (1 - x - xy)/(1 - 2x - 2x*y + 2x^2*y + x^2*y^2).
Number triangle T(n,k) = Sum_{j=0..n} binomial(n,j)*binomial(j,k)*(1+(-1)^(j-k))/2.
Define matrix: A(n,m,k) = If[m < n, 1, -1];
p(x,k) = CharacteristicPolynomial[A[n,m,k],x]; then t(n,m) = coefficients(p(x,n)). - Roger L. Bagula and Gary W. Adamson, Jan 25 2009
E.g.f.: exp(x*z)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n >= 2, T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 10 2013
E.g.f.: [(e^(2t)+1)/2] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x + 2/(e^(-2D)+1), i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x) where P_n(x) = [(x+2)^n + x^n]/2. Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x + 1 + D - 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, so the unsigned differential component 2/[e^(2D)+1] = 2 Sum_{n >= 0} Eta(-n) (-2D)^n/n!, where Eta(s) is the Dirichlet eta function, and 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers. The polynomials PI_n(x) of A081733 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Aside from the signs and the main diagonals, multiplying this triangle by 2 gives the face-vectors of the hypercubes A038207. - Tom Copeland, Sep 27 2015
T(n,k) = 2^(n-k-1+0^(n-k))*binomial(n, k). - Peter Luschny, Nov 10 2017

A075263 Triangle of coefficients of polynomials H(n,x) formed from the first (n+1) terms of the power series expansion of ( -x/log(1-x) )^(n+1), multiplied by n!.

Original entry on oeis.org

1, 1, -1, 2, -3, 1, 6, -12, 7, -1, 24, -60, 50, -15, 1, 120, -360, 390, -180, 31, -1, 720, -2520, 3360, -2100, 602, -63, 1, 5040, -20160, 31920, -25200, 10206, -1932, 127, -1, 40320, -181440, 332640, -317520, 166824, -46620, 6050, -255, 1, 362880, -1814400, 3780000, -4233600, 2739240, -1020600, 204630, -18660, 511, -1
Offset: 0

Views

Author

Paul D. Hanna, Sep 13 2002

Keywords

Comments

Special values: H(n,1)=0, H(2n,2)=0, H(n,-x) ~= ( x/log(1+x) )^(n+1), for x>0. H'(n,1) = -1/n!, where H'(n,x) = d/dx H(n,x).
The zeros of these polynomials are all positive reals >= 1. If we order the zeros of H(n,x), {r_k, k=0..(n-1)}, by magnitude so that r_0 = 1, r_k > r_(k-1), for 0 < k < n, then r_(n-k) = r_k/(r_k - 1) when 0 < k < n, n > 1, where r_(n/2) = 2 for even n.
Also Product_{k=0..(n-1)} r_k = n!, r_(n-1) ~ C 2^n.
I believe that these numbers are the coefficients of the Eulerian polynomials An(z) written in powers of z-1. That is, the sequence is: A0(1); A1(1), A1'(1); A2(1), A2'(1), A2''(1)/2!; A3(1), A3'(1), A3''(1)/2!, A3'''(1)/3!; A4(1), A4'(1), A4''(1)/2!, A4'''(1)/3!, A4''''(1)/4! etc. My convention: A0(z)=z, A1(z)=z, A2(z)=z+z^2, A3(z)=z+4z^2+z^3, A4(z)=z+11z^2+11z^3+z^4, etc. - Louis Zulli (zullil(AT)lafayette.edu), Jan 19 2005
H(n,2) gives 1,-1,0,2,0,-16,0,272,0,-7936,0,..., see A009006. - Philippe Deléham, Aug 20 2007
Row sums are zero except for first row. - Roger L. Bagula, Sep 11 2008
From Groux Roland, May 12 2011: (Start)
Let f(x) = (exp(x)+1)^(-1) then the n-th derivative of f equals Sum_{k=0..n} T(n,k)*(f(x))^(n+1-k).
T(n+1,0) = (n+1)*T(n,0); T(n+1,n+1) = -T(n,n) and for 0 < k < n T(n+1,k) = (n+1-k) * T(n,k) - (n-k+2)*T(n,k-1).
T(n,k) = Sum_{i=0..k} (-1)^(i+k)*(n-i)!*binomial(n-i,k-i)*S(n,n-i) where S(n,k) is a Stirling number of the second kind. (End)

Examples

			H(0,x) = 1
H(1,x) = (1 - 1*x)/1!
H(2,x) = (2 - 3*x + 1*x^2)/2!
H(3,x) = (6 - 12*x + 7*x^2 - 1*x^3)/3!
H(4,x) = (24 - 60*x + 50*x^2 - 15*x^3 + 1*x^4)/4!
H(5,x) = (120 - 360*x + 390*x^2 - 180*x^3 + 31*x^4 - 1*x^5)/5!
H(6,x) = (720 - 2520*x + 3360*x^2 - 2100*x^3 + 602*x^4 - 63*x^5 + 1*x^5)/6!
Triangle begins:
     1;
     1,     -1;
     2,     -3,     1;
     6,    -12,     7,     -1;
    24,    -60,    50,    -15,     1;
   120,   -360,   390,   -180,    31,    -1;
   720,  -2520,  3360,  -2100,   602,   -63,   1;
  5040, -20160, 31920, -25200, 10206, -1932, 127, -1;
		

Crossrefs

Cf. Eulerian numbers (A008292).

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j->
    (-1)^(n-j)*Binomial(n-k,j)*(j+1)^n )))); # G. C. Greubel, Jan 27 2020
  • Magma
    T:= func< n,k | &+[(-1)^(n-j)*Binomial(n-k,j)*(j+1)^n: j in [0..n-k]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 27 2020
    
  • Maple
    CL := f -> PolynomialTools:-CoefficientList(f,x):
    T_row := n -> `if`(n=0, [1], CL(x^(n+1)*polylog(-n, 1-x))):
    for n from 0 to 6 do T_row(n) od; # Peter Luschny, Sep 28 2017
  • Mathematica
    Table[CoefficientList[x^(n+1)*Sum[k^n*(1-x)^k, {k, 0, Infinity}], x], {n, 0, 10}]//Flatten (* Roger L. Bagula, Sep 11 2008 *)
    p[x_, n_]:= x^(n+1)*PolyLog[-n, 1-x]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten (* Roger L. Bagula and Gary W. Adamson, Sep 15 2008 *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff((-x/log(1-x+x^2*O(x^n)))^(n+1),k))
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    T(n,k)=sum(i=0,n-k,(-1)^(n-i)*binomial(n-k,i)*(i+1)^n)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Using e.g.f. A(x,y): */
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y^2*O(y^(k))); n!*polcoeff(polcoeff(-log(1-(1-exp(-X*Y))/y),n,x),k,y)}
    for(n=0,10,for(k=0,n-1,print1(T(n,k),", "));print(""))
    
  • PARI
    /* Deléham's DELTA: T(n,k) = [x^(n-k)*y^k] P(n,0) */
    {P(n,k)=if(n<0||k<0,0,if(n==0,1, P(n,k-1)+(x*(k\2+1)+y*(-(k\2+1)*((k+1)%2)))*P(n-1,k+1)))}
    {T(n,k)=polcoeff(polcoeff(P(n,0),n-k,x),k,y)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • Sage
    def T(n, k): return sum( (-1)^(n-j)*binomial(n-k, j)*(j+1)^n for j in (0..n-k))
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020
    

Formula

Generated by [1, 1, 2, 2, 3, 3, ...] DELTA [ -1, 0, -2, 0, -3, 0, ...], where DELTA is the operator defined in A084938.
T(n, k) = Sum_{i=0..n-k} (-1)^(n-i)*C(n-k, i)*(i+1)^n; n >= 0, 0 <= k <= n. - Paul D. Hanna, Jul 21 2005
E.g.f.: A(x, y) = -log(1-(1-exp(-x*y))/y). - Paul D. Hanna, Jul 21 2005
p(x,n) = x^(n + 1)*Sum_{k>=0} k^n*(1 - x)^k; t(n,m) = Coefficients(p(x,n)). - Roger L. Bagula, Sep 11 2008
p(x,n) = x^(n + 1)*PolyLog(-n, 1 - x); t(n,m) = coefficients(p(x,n)) for n >= 1. - Roger L. Bagula and Gary W. Adamson, Sep 15 2008

Extensions

Error in one term corrected by Benoit Cloitre, Aug 20 2007

A354065 Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).

Original entry on oeis.org

1, -2, 2, -8, 56, -496, 3184, -22784, 273920, -4539136, 48104704, -506000384, 10591523840, -204528633856, 2888557717504, -53417657237504, 1249919350046720, -28453501844586496, 624022403933077504, -13729309300086800384, 372737701735949926400, -11010228423219933085696
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Tan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest

Formula

E.g.f.: Sum_{k>=1} mu(k) * log(1 + tan(x^k)) / k.

A080832 Expansion of e.g.f. exp(x) * (sec(exp(x) - 1))^2.

Original entry on oeis.org

1, 1, 3, 13, 67, 421, 3115, 26349, 250867, 2655541, 30929019, 393019837, 5410699075, 80221867909, 1274393162827, 21594697199757, 388796268801427, 7411769447027413, 149143210226032923, 3159088788867736669
Offset: 0

Views

Author

Emanuele Munarini, Mar 28 2003

Keywords

Comments

Take the smallest element from each block of the set partitions of {1,2,...,n+1} into an odd number of blocks. Form a "zag" permutation a[1],a[2],...,a[k] such that a[1] < a[2] > a[3] < ... > a[k]. a(n) is the number of ways to order the blocks in accordance with such "zag" permutations. - Geoffrey Critzer, Nov 23 2012

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x)*(sec(exp(x)-1))^2, x,n+1),x,n),n=0..25); # Muniru A Asiru, Jul 28 2018
  • Mathematica
    nn=21;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[Tan[Exp[x]-1],{x,0,nn}],x],1]  (* Geoffrey Critzer, Nov 23 2012 *)

Formula

E.g.f.: exp(x) / (cos(exp(x) - 1))^2.
The sequence 0, 1, 1, 3, ... has e.g.f. tan(exp(x)-1). It has general term sum{k=0..n, S2(n, k) A009006(k)} for n>1 (S2(n, k) Stirling numbers of second kind). - Paul Barry, Apr 20 2005
a(n) ~ 2*n * n! / ((2+Pi) * (log(1+Pi/2))^(n+2)). - Vaclav Kotesovec, Jul 28 2018

A081733 Triangle read by rows, T(n,k) = 2^(n-k)*[x^k] Euler_polynomial(n, x), for n >= 0, k >= 0.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 0, -3, 1, 0, 8, 0, -4, 1, -16, 0, 20, 0, -5, 1, 0, -96, 0, 40, 0, -6, 1, 272, 0, -336, 0, 70, 0, -7, 1, 0, 2176, 0, -896, 0, 112, 0, -8, 1, -7936, 0, 9792, 0, -2016, 0, 168, 0, -9, 1, 0, -79360, 0, 32640, 0, -4032, 0, 240, 0, -10, 1, 353792, 0, -436480, 0, 89760, 0, -7392, 0, 330, 0, -11, 1, 0, 4245504, 0
Offset: 0

Views

Author

Wouter Meeussen, Apr 06 2003

Keywords

Comments

Sum of row n equals Euler(n) (in the sense of the non-official version A122045; R. P. Stanley calls A000111 Euler numbers.)

Examples

			The coefficient lists of the first 5 Euler polynomials are {1}, {-1/2, 1}, {0, -1, 1}, {1/4, 0, -3/2, 1}, {0, 1, 0, -2, 1}. Multiply by 2^(n-k) to get
   1,
  -1,  1,
   0, -2,  1,
   2,  0, -3,  1,
   0,  8,  0, -4,  1.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 2^(n-k)*coeff(euler(n,x),x,k):
    T := (n,k) -> 2^(n-k)*binomial(n,k)*euler(n-k,1): # Peter Luschny, Jan 25 2009
  • Mathematica
    Table[2^n (1/2)^(Range[0, n]) CoefficientList[EulerE[n, x], x], {n, 0, 16}]
  • Sage
    def A081733(n, k) : return (-2)^(n-k)*binomial(n,k)*euler_polynomial(n-k,1)
    # Peter Luschny, Jul 18 2012

Formula

T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(0) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
Matrix inverse is A119468 and central column is A214447. - Peter Luschny, Jul 18 2012
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then T(n,k) = [x^(n-k)]((skp{n}(x-1) - skp{n}(x+1))/2 + x^n). - Peter Luschny, Jul 22 2012
E.g.f.: exp(z*x)*(1-tanh(x)). - Peter Luschny, Aug 01 2012
E.g.f.: [2/(e^(2t)+1)] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x - 2/[e^(-2D)+1], i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x). Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x - 1 - D + 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, and P_n(0) are the coefficients (mod signs/shift) of these sequences. The polynomials PI_n(x) of A119468 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Note that 2/[e^(2t)+1] = 2 Sum_{n >= 0} Eta(-n) (-2t)^n/n!], where Eta(s) is the Dirichlet eta function, and b_n = 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers, so P_n(x) = (b. + x)^n, as an Appell polynomial. - Tom Copeland, Sep 27 2015

Extensions

Corrected T(0,0) = Euler(0) = 1 (was 0), Peter Luschny, Sep 30 2010
New name from Peter Luschny, Jul 18 2012

A154342 T(n,k) an additive decomposition of the signed tangent number (triangle read by rows).

Original entry on oeis.org

1, 2, -1, 4, -5, 1, 8, -19, 9, 0, 16, -65, 55, 0, -6, 32, -211, 285, 0, -120, 30, 64, -665, 1351, 0, -1470, 810, -90, 128, -2059, 6069, 0, -14280, 13020, -3150, 0
Offset: 0

Views

Author

Peter Luschny, Jan 07 2009

Keywords

Comments

The Swiss-Knife polynomials A153641 can be understood as a sum of polynomials. Evaluated at x=1 these polynomials result in a decomposition of the signed tangent numbers A009006.

Examples

			Triangle begins:
    1,
    2,    -1,
    4,    -5,    1,
    8,   -19,    9, 0,
   16,   -65,   55, 0,     -6,
   32,  -211,  285, 0,   -120,    30,
   64,  -665, 1351, 0,  -1470,   810,   -90,
  128, -2059, 6069, 0, -14280, 13020, -3150, 0,
  ...
		

Crossrefs

Programs

  • Maple
    T := proc(n,k) local v,c; c := m -> if irem(m+1,4) = 0 then 0 else 1/((-1)^iquo(m+1,4)*2^iquo(m,2)) fi; add((-1)^(v)*binomial(k,v)*c(k)*(v+2)^n,v=0..k) end: seq(print(seq(T(n,k),k=0..n)),n=0..8);
  • Mathematica
    c[m_] := If[Mod[m+1, 4] == 0, 0, 1/((-1)^Quotient[m+1, 4]*2^Quotient[m, 2])]; t[n_, k_] := Sum[(-1)^v*Binomial[k, v]*c[k]*(v+2)^n, {v, 0, k}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2013, after Maple *)

Formula

Let c(k) = ((-1)^floor(k/4) / 2^floor(k/2)) * [4 not div k+1] (Iverson notation).
T(n,k) = Sum_{v=0..k} (-1)^v*binomial(k,v)*c(k)*(v+2)^n.
A155585(n) = Sum_{k=0..n} T(n,k).

A353911 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + tan(x).

Original entry on oeis.org

1, -2, 2, -32, 56, -416, 3184, -85504, 309760, -4087552, 48104704, -546922496, 10591523840, -194387924992, 3133776259072, -129880886411264, 1249919350046720, -29073986250604544, 624022403933077504, -15137719350365519872, 381632216575339397120, -11149155036737662615552
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Tan[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A354175 Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + tan(x).

Original entry on oeis.org

1, 0, 2, -8, 56, -256, 3184, -36224, 273920, -2845696, 48104704, -676312064, 10591523840, -149454094336, 2888557717504, -72214957359104, 1249919350046720, -23620669488234496, 624022403933077504, -15637185047733469184, 372737701735949926400, -9655667879651150135296
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = 2^(n + 1) (2^(n + 1) - 1) Abs[BernoulliB[n + 1]]/((n + 1) n!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 22}]

Formula

E.g.f.: Sum_{k>=1} A067856(k) * log(1 + tan(x^k)) / k.

A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.

Original entry on oeis.org

1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0

Views

Author

Paul Curtz, Mar 08 2014

Keywords

Examples

			The triangle T(n,k) begins:
                      1
                    0   1
                 -1  -1   0
                0  -1  -2  -2
              5   5   4   2   0
             ...
The array read as a table, A(n,k) = T(n+k, k), starts:
     1,    1,    0,   -2,    0,   16,    0, -272,    0, ...
     0,   -1,   -2,    2,   16,  -16, -272,  272, ...
    -1,   -1,    4,   14,  -32, -256,  544, ...
     0,    5,   10,  -46, -224,  800, ...
     5,    5,  -56, -178, 1024, ...
     0,  -61, -122, 1202, ...
   -61,  -61, 1324, ...
     0, 1385, ...
  1385, ...
  ...
For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
		

Crossrefs

Unsigned version is A008280.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, m_] /; nJean-François Alcover, Dec 30 2014 *)
  • Maxima
    T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* Vladimir Kruchinin, Apr 06 2015 */
    
  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

a(n) = A057077(n)*A008280(n) by rows.
a(n) is the increasing antidiagonals of the difference table of A155585(n).
Central column of triangle: A099023(n).
Right main diagonal of triangle: A155585(n) (see A009006(n)).
Left main diagonal of triangle: A122045(n).
T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - Vladimir Kruchinin, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]
T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - Petros Hadjicostas, Feb 21 2021

A330504 Expansion of e.g.f. Sum_{k>=1} tanh(x^k).

Original entry on oeis.org

1, 2, 4, 24, 136, 480, 4768, 40320, 249856, 4112640, 39563008, 319334400, 6249389056, 82473431040, 1044235737088, 20922789888000, 355897293438976, 4408265775513600, 121616011523719168, 2757288942600192000, 31308290669925892096
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[Tanh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    A155585[n_] := Sum[StirlingS2[n, k] (-2)^(n - k) k!, {k, 0, n}]; a[n_] := n! DivisorSum[n, A155585[#]/#! &]; Table[a[n], {n, 1, 21}]
    Table[n! DivisorSum[n, 2^(# + 1) (2^(# + 1) - 1) BernoulliB[# + 1]/(# + 1)! &, OddQ[#] &], {n, 1, 21}]

Formula

E.g.f.: Sum_{k>=1} (exp(2*x^k) - 1) / (exp(2*x^k) + 1).
a(n) = n! * Sum_{d|n} A155585(d) / d!.
a(n) = n! * Sum_{d|n, d odd} 2^(d + 1) * (2^(d + 1) - 1) * Bernoulli(d + 1) / (d + 1)!.
Previous Showing 11-20 of 25 results. Next