cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A059332 Determinant of n X n matrix A defined by A[i,j] = (i+j-1)! for 1 <= i,j <= n.

Original entry on oeis.org

1, 1, 2, 24, 3456, 9953280, 859963392000, 3120635156889600000, 634153008009974906880000000, 9278496603801318870491332608000000000, 12218100099725239100847669366019325952000000000000, 1769792823810713244721831122736499011207487815680000000000000000
Offset: 0

Views

Author

Noam Katz (noamkj(AT)hotmail.com), Jan 26 2001

Keywords

Comments

Hankel transform of n! (A000142(n)) and of A003319. - Paul Barry, Oct 07 2008
Hankel transform of A000255. - Paul Barry, Apr 22 2009
Monotonic magmas of size n, i.e., magmas with elements labeled 1..n where product(i,j) >= max(i,j). - Chad Brewbaker, Nov 03 2013
Also called the bouncing factorial function. - Alexander Goebel, Apr 08 2020

Examples

			a(4) = 3456 because the relevant matrix is {1 2 6 24 / 2 6 24 120 / 6 24 120 720 / 24 120 720 5040 } and the determinant is 3456.
		

Crossrefs

Cf. A162014 and A055209. - Johannes W. Meijer, Jun 27 2009

Programs

  • Maple
    with(linalg): Digits := 500: A059332 := proc(n) local A, i, j: A := array(1..n,1..n): for i from 1 to n do for j from 1 to n do A[i,j] := (i+j-1)! od: od: RETURN(det(A)) end: for n from 1 to 20 do printf(`%d,`, A059332(n)) od;
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)*n!^2/n)
        end:
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 29 2020
  • Mathematica
    Table[n! BarnesG[n+1]^2, {n, 1, 10}] (* Jean-François Alcover, Sep 19 2016 *)
  • PARI
    A059332(n)=matdet(matrix(n,n,i,j,(i+j-1)!)) \\ M. F. Hasler, Nov 03 2013
    
  • PARI
    a(n) = 2^binomial(n,2)*prod(k=1,n-1, binomial(k+2,2)^(n-1-k)) \\ Ralf Stephan, Nov 04 2013
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def all_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            0.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
    puts all_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(n) = a(n-1)*(n!)*(n-1)! for n >= 2 so a(n) = product k=1, 2, ..., n k!*(k-1)!.
a(n) = 2^C(n,2)*Product_{k=1..(n-1), C(k+2,2)^(n-1-k)}. - Paul Barry, Jan 15 2009
a(n) = n!*product(k!, k=0..n-1)^2. - Johannes W. Meijer, Jun 27 2009
a(n) ~ (2*Pi)^(n+1/2) * exp(1/6 - n - 3*n^2/2) * n^(n^2 + n + 1/3) / A^2, where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 01 2015

Extensions

More terms from James Sellers, Jan 29 2001
Offset corrected. Comment and formula aligned with new offset by Johannes W. Meijer, Jun 24 2009
a(0)=1 prepended by Alois P. Heinz, Apr 08 2020

A129065 Coefficients of the v=1 member of a family of certain orthogonal polynomials.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 12, 10, 1, 0, 144, 156, 28, 1, 0, 2880, 3696, 908, 60, 1, 0, 86400, 125280, 37896, 3508, 110, 1, 0, 3628800, 5780160, 2036592, 236472, 10528, 182, 1, 0, 203212800, 349090560, 138517632, 19022736, 1074176, 26600, 280, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

For v >= 1 the orthogonal polynomials p(n,v,x) have v integer zeros k*(k-1), k = 1..v, for every n >= v.
Coefficients of p(n,v=1,x) (in the quoted Bruschi, et al., paper p(nu, n)(x) of eqs. (4) and (8a),(8b)) in increasing powers of x.
The v-family p(n,v,x) consists of characteristic polynomials of the tridiagonal M x M matrix V=V(M,v) with entries V_{m,n} given by v*(v-1) - (m-1)^2 - (v-m)^2 if n=m, m=1,...,M; (m-1)^2 if n=m-1, m=2,...,M; (v-m)^2 if n=m+1, m=1..M-1 and 0 else. p(n,v,x) := det(x*I_n - V(n,v) with the n-dimensional unit matrix I_n.
p(n,v=1,x) has, for every n >= 1, a zero for x=0, i.e., det(V(n,1))=0 for every n >= 1. This is obvious.
The column sequences give A000007, A010790, A129460, A129461 for m=0,1,2,3.

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,   12,   10,   1;
  0,  144,  156,  28,   1;
  0, 2880, 3696, 908,  60,  1;
  ...
n=5,[0,2880,3696,908,60,1] stands for the polynomial x*(2880 + 3696*x + 908*x^2 + 60*x^3 + 1*x^4) with one zero 0 and some other four zeros.
Tridiagonal matrix V(5,1) = [[0,0,0,0,0], [1,-2,1,0,0], [0,4,-8,4,0], [0,0,9,-18,9], [0,0,0,16,-32]].
		

Crossrefs

Columns: A000007 (m=0), A010790, (m=1), A129460 (m=2), A129461 (m=3).
Cf. A129458 (row sums), A129462 (v=2 triangle).

Programs

  • Magma
    function T(n,k) // T = A129065
      if k lt 0 or k gt n then return 0;
      elif n eq 0 then return 1;
      else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
    
  • Mathematica
    nmax = 9; T[n_, m_] := T[n, m] = (-(n-2)^2)*(n-1)^2*T[n-2, m] + T[n-1, m-1] + 2*(n-1)^2*T[n-1, m]; T[n_, m_] /; n < m = 0; T[-1, ] = 0; T[0, 0] = 1; T[, -1] = 0; Flatten[Table[T[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Sep 26 2011, after recurrence *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129065
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024

Formula

T(n,m) = [x^m] p(n,1,x), n >= 0, with the three-term recurrence for orthogonal polynomial systems of the form p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v+1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x), n >= 1; p(-1,v,x)=0 and p(0,v,x)=1. Put v=1 here.
Recurrence: T(n,m) = T(n-1,m-1) + (2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*T(n-1,m) - ((n-1)^2*(n-1-v)^2)*T(n-2, m); T(n,m)=0 if n < m, T(-1,m):=0, T(0,0)=1, T(n,-1)=0. Put v=1 here.
Sum_{k=0..n} T(n, k) = A129458(n) (row sums).

A010796 a(n) = n!*(n+1)!/2.

Original entry on oeis.org

1, 6, 72, 1440, 43200, 1814400, 101606400, 7315660800, 658409472000, 72425041920000, 9560105533440000, 1491376463216640000, 271430516305428480000, 57000408424139980800000, 13680098021793595392000000, 3720986661927857946624000000
Offset: 1

Views

Author

Keywords

Comments

Column 2 in triangle A009963.
a(n) = A078740(n, 2), first column of (3, 2)-Stirling2 array.
Also the number of undirected Hamiltonian paths in the complete bipartite graph K_{n,n+1}. - Eric W. Weisstein, Sep 03 2017
Also, the number of undirected Hamiltonian cycles in the complete bipartite graph K_{n+1,n+1}. - Pontus von Brömssen, Sep 06 2022

Crossrefs

Main diagonal of A291909.

Programs

  • Magma
    [Factorial(n)* Factorial(n+1) / 2: n in [1..20]]; // Vincenzo Librandi, Jun 11 2013
    
  • Mathematica
    Table[n! (n + 1)! / 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 11 2013 *)
    Times@@@Partition[Range[20]!,2,1]/2 (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    for(n=1,30, print1(n!*(n+1)!/2, ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

a(n) = 2^(n-1) * A006472(n+1).
a(n) = A010790(n)/2.
E.g.f.: (hypergeom([1, 2], [], x)-1)/2.
a(n) = Product_{k=1..n-1} (k^2+3*k+2). - Gerry Martens, May 09 2016
E.g.f.: x*hypergeom([1, 3], [], x). - Robert Israel, May 09 2016
From Amiram Eldar, Jun 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(BesselI(1, 2) - 1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(1 - BesselJ(1, 2)). (End)

A162446 Numerators of the column sums of the ZG1 matrix.

Original entry on oeis.org

-13, 401, -68323, 2067169, -91473331, 250738892357, -12072244190753, 105796895635531, -29605311573467996893, 9784971385947359480303, -5408317625058335310276319, 2111561851139130085557412009
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The ZG1 matrix coefficients are defined by ZG1[2m-1,1] = 2*zeta(2m-1) for m = 2, 3, .. , and the recurrence relation ZG1[2m-1,n] = (ZG1[2m-3,n-1] - (n-1)^2*ZG1[2m-1,n-1])/(n*(n-1)) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= (m-1). As usual zeta(m) is the Riemann zeta function. For the ZG2 matrix, the even counterpart of the ZG1 matrix, see A008955.
These two formulas enable us to determine the values of the ZG1[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZG1[1,1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZG1 matrix, for m >= 1 and n >= 2, can be generated with GFZ(z;n) = (hg(n)*CFN1(z;n)*GFZ(z;n=1) + ZETA(z;n))/pg(n) with pg(n) = 6*(n-1)!* (n)!*A160476(n) and hg(n) = 6*A160476(n). For the CFN1(z;n) and the ZETA(z;n) polynomials see A160474.
The column sums cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity), for n >= 2, of the ZG1 matrix can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take ZGx[2*m-1,n] = 2, for m >= 1, and ZGx[ -1,n] = ZG1[ -1,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The ZG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The ZG1 matrix is related to the ZS1 matrix, see A160474 and the formulas below.

Examples

			The first few generating functions GFZ(z;n) are:
GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
		

Crossrefs

See A162447 for the denominators of the column sums.
The pg(n) and hg(n) sequences lead to A160476.
The ZG1[ -1, n] coefficients lead to A000984, A002195 and A002196.
The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle A160474.
The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to A008955.
The b(n) sequence equals A001790(n)/ A120777(n-1) for n >= 1.
Cf. A001620 (gamma) and A010790 (n!*(n+1)!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162448 (LG1 matrix)

Programs

  • Maple
    nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162447(n).
with cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity) for n >= 2.
GFZ(z;n) = sum( ZG1[2*m-1,n]*z^(2*m-2),m=1..infinity)
GFZ(z;n) = ZG1[ -1,n-1]/(n*(n-1))+(z^2-(n-1)^2)*GFZ(z;n-1)/(n*(n-1)) for n >= 2 with GFZ(z;n=1) = -Psi(1+z) - Psi(1-z).
ZG1[ -1,n] = binomial(2*n,n)*Omega[n] = A000984(n)*A002195(n)/A002196(n).
ZG1[2*m-1,n] = b(n)*ZS1[2*m-1,n] with b(n) = binomial(2*n,n)/2^(2*n-1) for n >= 1.

A201862 Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.

Original entry on oeis.org

1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2011

Keywords

Comments

Also the number of vertex covers and independent vertex sets of the n X n bishop graph.

Crossrefs

Programs

  • Mathematica
    knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
    *Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
    *Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
    Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]

Formula

a(n) = A216078(n+1) * A216332(n+1). - Andrew Howroyd, May 08 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 01 2024

A351409 a(n) = n*(n!)^(2*n-2).

Original entry on oeis.org

1, 8, 3888, 764411904, 214990848000000000, 224634374557469245440000000000, 1880461634768804771224006806208512000000000000, 240091793104790737576620139562796649430329798636339200000000000000, 813675117804798213250391541747787241264315446434692481270971279693253181440000000000000000
Offset: 1

Views

Author

Dan Eilers, Feb 11 2022

Keywords

Comments

a(n) is the number of reduced Stable Marriage Problem instances of order n. In the SMP, relabeling men or women has no effect on the number of stable matchings. So the men and women can be relabeled to normalize the order of man #1's rankings (with woman #1 as his first choice and woman n as his last choice), and to similarly normalize the order of woman #1's rankings, except for her ranking of man #1. This reduces the number of possible instances by a factor of n!(n-1)! (A010790 with shifted offset), from (n!)^(2n) (A185141) to a(n). This reduction is directly analogous to the identical reduction from latin squares (A002860) to reduced latin squares (A000315), and can be directly applied to the Latin Stable Marriage Problem (A351413). As with reduced latin squares, some further reduction is possible analogous to row/column reduced latin squares (A123234).
It is tempting to aim for a reduction of (n!)^2 by simultaneously normalizing all of man #1 and woman #1's preferences, but that isn't possible unless man #1 and woman #1 happen to be mutual first choices.
Applying this reduction to A344669 reduces A344669(2) and A344669(4) to 1, demonstrating that these maximal instances arising in A005154 are unique up to participant relabeling. It raises the question of which other values of n make A344669(n) reducible to 1.

Crossrefs

Programs

Formula

a(n) = A185141(n) / A010790(n-1).

A090441 Symmetric triangle of certain normalized products of decreasing factorials.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 12, 6, 1, 1, 24, 144, 144, 24, 1, 1, 120, 2880, 8640, 2880, 120, 1, 1, 720, 86400, 1036800, 1036800, 86400, 720, 1, 1, 5040, 3628800, 217728000, 870912000, 217728000, 3628800, 5040, 1, 1, 40320, 203212800, 73156608000
Offset: 0

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Comments

Similar to, but different from, superfactorial Pascal triangle A009963.
A009963(n,m) = (Product_{p=0..m-1} (n-p)!)/superfac(m) with n >= m >= 0, otherwise 0.
From Natalia L. Skirrow, Apr 13 2025 (Start)
Denoting this sequence as the superbinomial sb(n,k), the hook length formula for a j X k rectangular Young tableau states the number of configurations of j*k distinct numbers such that each row and column is strictly increasing is (j*k)!/sb(j+k,j), ie. 1/sb(j+k,j) is the probability that a random permutation is a Young tableau.
Meanwhile, if the numbers are placed into the array with repetition, but the columns are still strictly increasing, there are c(n,j,k) = sb(n+1,j+k)/(sb(n+1-j,k)*sb(n+1-k,j)) configurations.
If the strict criterion is relaxed to monotonic, this becomes C(n,j,k) = sb(n-1+j+k,j+k)/(sb(n-1+j,j)*sb(n-1+k,k)).
By proposition 13.2(i) of Stanley's PhD thesis, for fixed j,k, c(n,j,k) and C(n,j,k) are polynomials in n of degree j*k, and c(n,j,k) = (-1)^(j*k)*C(-n,j,k).
For example, c(n,1,k)=(n choose k) and C(n,1,k)=(n+k-1 choose k), while c(n,2,k) = N(n,k+1) and C(n,2,k) = N(n+k,k+1), so the binomial coefficients and Narayana numbers N=A001263 obey the dualities (under continuation as polynomials) (n choose k) = (-1)^k*(k-1-n choose k) and N(n,k) = N(k-1-n,k).
(End)

Examples

			Rows for n = 0, 1, 2, 3, ...:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  2,  1;
  1,  6, 12,  6,  1;
  ...
		

Crossrefs

Column sequences give: A000012 (powers of 1), A000142 (factorials), A010790, A090443-4, etc.
Cf. A090445 (row sums), A090446 (alternating row sums).

Programs

  • PARI
    spf(n) = prod(k=2, n, k!);
    T(n,m) = spf(n-1)/spf(m-1)/spf(n-m-1);
    row(n) = vector(n+1, k, T(n, k-1)); \\ Michel Marcus, Apr 13 2025

Formula

a(n, m) = 0 if n < m;
a(n, m) = 1 if m = 0 or m = n;
a(n, m) = (Product_{p=1..m} (n-p)!)/superfac(m-1) if n >= 0, 1 <= m <= n+1, where superfac(n) := A000178(n), n >= 0, (superfactorials).
a(n, m) = superfac(n-1)/superfac(m-1)/superfac(n-m-1)
With offset 1, equals ConvOffsStoT transform of the factorials, A000142: (1, 1, 2, 6, 24, ...); e.g., ConvOffs transform of (1, 1, 2, 6) = (1, 6, 12, 6, 1). - Gary W. Adamson, Apr 21 2008

Extensions

OFFSET changed from -1 to 0 by Natalia L. Skirrow, Apr 13 2025

A130182 Coefficients of the v=1 member of a family of certain orthogonal polynomials.

Original entry on oeis.org

1, -2, 1, 0, -2, 1, 0, -12, 4, 1, 0, -144, 28, 20, 1, 0, -2880, 216, 508, 50, 1, 0, -86400, -2592, 17400, 2548, 98, 1, 0, -3628800, -449280, 788688, 153760, 8568, 168, 1, 0, -203212800, -42405120, 46032768, 11269008, 811648, 23016, 264, 1, 0, -14631321600, -4187635200, 3372731136
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

For v>=1 the orthogonal polynomials pt(n,v,x) have v integer zeros k*(k+1), k=1..v, for every n>=v and some other n-v zeros. The integer zeros are from 2*A000217.
The v-family pt(n,v,x) consists of characteristic polynomials of the tridiagonal M x M matrix Vt=Vt(M,v) with entries Vt_{m,n} given by 2*m*(v+1-m) if n=m, m=1,...,M; -m*(v+1-m) if n=m-1, m=2,...,M; -m*(v+1-m) if n=m+1, m=1..M-1 and 0 else. pt(n,v,x):=det(x*I_n-Vt(n,v)) with the n dimensional unit matrix I_n.
pt(n,v=1,x) has, for every n>=1, among its n zeros one for x=2. pt(1,1,x) has therefore only the integer zeros 2. det(Vt(1,1))=2.
The column sequences give [1,-2,0,0,0,...], A010790(n-1)*(-1)^(n-1), A130185, A130186 for m=0,1,2,3.
Coefficients of pt(n,v=1,x) (in the quoted Bruschi et al. paper {\tilde p}^{(\nu)}_n(x) of eqs. (20) and (24a),(24b)) in increasing powers of x.

Examples

			Triangle begins:
[1];
[-2,1];
[0,-2,1];
[0,-12,4,1];
[0,-144,28,20,1];
[0,-2880,216,508,50,1];
...
Row n=5:[0,-2880,216,508,50,1]; pt(5,2,x)= x*(-2880+216*x+508*x^2+50*x^3+1*x^4)= x*(x-2)*(1440+612*x+52*x^2+x^3). pt(5,1,x) has the guaranteed integer zero x=2 (and also x=0 and some other three zeros).
Row n=1:[ -2,1]. pt(1,1,x)=-2+x with integer zero x=2.
		

Crossrefs

Cf. A129065 (a v=1 member of a similar family).
Row sums A130183, unsigned row sums A130184.

Formula

a(n,m) = [x^m]pt(n,1,x), n>=0, with the three term recurrence for orthogonal polynomial systems of the form pt(n,v,x) = (x + 2*n*(n-1-v))*pt(n-1,v,x) -(n-1)*n*(n-1-v)*(n-2-v)*pt(n-2,v,x), n>=1; pt(-1,v,x)=0 and pt(0,v,x)=1. Put v=1 here.
Recurrence: a(n,m) = a(n-1,m-1)+2*n*(n-2)*a(n-1,m) - (n-1)*n*(n-2)*(n-3)*a(n-2,m); a(n,m)=0 if n

A134435 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k odd entries that are followed by a smaller entry (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 2, 2, 4, 12, 12, 12, 72, 36, 144, 432, 144, 144, 1728, 2592, 576, 2880, 17280, 17280, 2880, 2880, 57600, 172800, 115200, 14400, 86400, 864000, 1728000, 864000, 86400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0

Author

Emeric Deutsch, Nov 22 2007

Keywords

Comments

Row n has ceiling(n/2) entries (for n>0). T(2n,0) = T(2n+1,0) = n!*(n+1)! = A010790(n).
T(n,k) is also the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd, odd) (0 <= k <= ceiling(n,2)-1). Example: T(3,1)=4 because we have 132, 213, 312 and 231. - Emeric Deutsch, Dec 14 2008

Examples

			T(3,1) = 4 because we have 132, 312, 231 and 321.
Triangle starts:
    1;
    1;
    2;
    2,   4;
   12,  12;
   12,  72,  36;
  144, 432, 144;
  ...
		

Crossrefs

Bisection of column k=0 gives A010790.
Row sums give A000142.
Cf. A134434.

Programs

  • Maple
    T:=proc(n, k) if `mod`(n, 2)=0 then binomial((1/2)*n-1, k)*binomial((1/2)* n+1, k+1)*factorial((1/2)*n)^2 elif `mod`(n, 2)=1 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)* n+1/2, k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k=0..max(0,ceil((1/2)*n)-1)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_,k_]:=If[EvenQ[n],((n/2)!)^2Binomial[n/2-1,k]Binomial[n/2+1,k+1], ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,11},{k,0,Floor[(n-1)/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)

Formula

T(2n,k) = (n!)^2*C(n-1,k) C(n+1,k+1); T(2n+1,k) = n!(n+1)! * C(n,k) * C(n+1,k).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Jul 12 2024

A344669 a(n) is the number of preference profiles in the stable marriage problem with n men and n women that generate the maximum possible number of stable matchings.

Original entry on oeis.org

1, 2, 1092, 144, 507254400
Offset: 1

Author

Tanya Khovanova and MIT PRIMES STEP Senior group, May 27 2021

Keywords

Comments

From Dan Eilers, Dec 23 2023: (Start)
A357271 provides the best known lower bounds for the maximum number of stable matchings of order n.
A357269 provides exact results. (End)

Examples

			For n=2, there are 16 possible preference profiles: 14 of them generate one stable matching and 2 of them generate two stable matchings. Thus, a(2) = 2.
		

Formula

a(n) = A368433(n) * A010790(n-1). - Dan Eilers, Dec 24 2023

Extensions

a(5) from Dan Eilers, Dec 23 2023
Previous Showing 11-20 of 50 results. Next