A059332
Determinant of n X n matrix A defined by A[i,j] = (i+j-1)! for 1 <= i,j <= n.
Original entry on oeis.org
1, 1, 2, 24, 3456, 9953280, 859963392000, 3120635156889600000, 634153008009974906880000000, 9278496603801318870491332608000000000, 12218100099725239100847669366019325952000000000000, 1769792823810713244721831122736499011207487815680000000000000000
Offset: 0
Noam Katz (noamkj(AT)hotmail.com), Jan 26 2001
a(4) = 3456 because the relevant matrix is {1 2 6 24 / 2 6 24 120 / 6 24 120 720 / 24 120 720 5040 } and the determinant is 3456.
- Alois P. Heinz, Table of n, a(n) for n = 0..32
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Googology Wiki, Bouncing Factorial
-
with(linalg): Digits := 500: A059332 := proc(n) local A, i, j: A := array(1..n,1..n): for i from 1 to n do for j from 1 to n do A[i,j] := (i+j-1)! od: od: RETURN(det(A)) end: for n from 1 to 20 do printf(`%d,`, A059332(n)) od;
# second Maple program:
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1)*n!^2/n)
end:
seq(a(n), n=0..12); # Alois P. Heinz, Apr 29 2020
-
Table[n! BarnesG[n+1]^2, {n, 1, 10}] (* Jean-François Alcover, Sep 19 2016 *)
-
A059332(n)=matdet(matrix(n,n,i,j,(i+j-1)!)) \\ M. F. Hasler, Nov 03 2013
-
a(n) = 2^binomial(n,2)*prod(k=1,n-1, binomial(k+2,2)^(n-1-k)) \\ Ralf Stephan, Nov 04 2013
-
def mono_choices(a,b,n)
n - [a,b].max
end
def all_mono_choices(n)
accum =1
0.upto(n-1) do |i|
0.upto(n-1) do |j|
accum = accum * mono_choices(i,j,n)
end
end
accum
end
1.upto(12) do |k|
puts all_mono_choices(k)
end # Chad Brewbaker, Nov 03 2013
Offset corrected. Comment and formula aligned with new offset by
Johannes W. Meijer, Jun 24 2009
A129065
Coefficients of the v=1 member of a family of certain orthogonal polynomials.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 12, 10, 1, 0, 144, 156, 28, 1, 0, 2880, 3696, 908, 60, 1, 0, 86400, 125280, 37896, 3508, 110, 1, 0, 3628800, 5780160, 2036592, 236472, 10528, 182, 1, 0, 203212800, 349090560, 138517632, 19022736, 1074176, 26600, 280, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 12, 10, 1;
0, 144, 156, 28, 1;
0, 2880, 3696, 908, 60, 1;
...
n=5,[0,2880,3696,908,60,1] stands for the polynomial x*(2880 + 3696*x + 908*x^2 + 60*x^3 + 1*x^4) with one zero 0 and some other four zeros.
Tridiagonal matrix V(5,1) = [[0,0,0,0,0], [1,-2,1,0,0], [0,4,-8,4,0], [0,0,9,-18,9], [0,0,0,16,-32]].
-
function T(n,k) // T = A129065
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
-
nmax = 9; T[n_, m_] := T[n, m] = (-(n-2)^2)*(n-1)^2*T[n-2, m] + T[n-1, m-1] + 2*(n-1)^2*T[n-1, m]; T[n_, m_] /; n < m = 0; T[-1, ] = 0; T[0, 0] = 1; T[, -1] = 0; Flatten[Table[T[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Sep 26 2011, after recurrence *)
-
@CachedFunction
def T(n,k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024
A010796
a(n) = n!*(n+1)!/2.
Original entry on oeis.org
1, 6, 72, 1440, 43200, 1814400, 101606400, 7315660800, 658409472000, 72425041920000, 9560105533440000, 1491376463216640000, 271430516305428480000, 57000408424139980800000, 13680098021793595392000000, 3720986661927857946624000000
Offset: 1
-
[Factorial(n)* Factorial(n+1) / 2: n in [1..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[n! (n + 1)! / 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 11 2013 *)
Times@@@Partition[Range[20]!,2,1]/2 (* Harvey P. Dale, Jul 04 2017 *)
-
for(n=1,30, print1(n!*(n+1)!/2, ", ")) \\ G. C. Greubel, Feb 07 2018
A162446
Numerators of the column sums of the ZG1 matrix.
Original entry on oeis.org
-13, 401, -68323, 2067169, -91473331, 250738892357, -12072244190753, 105796895635531, -29605311573467996893, 9784971385947359480303, -5408317625058335310276319, 2111561851139130085557412009
Offset: 2
The first few generating functions GFZ(z;n) are:
GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
See
A162447 for the denominators of the column sums.
The pg(n) and hg(n) sequences lead to
A160476.
The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle
A160474.
The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to
A008955.
-
nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
# End program 1
nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
# End program 2
# Maple programs edited by Johannes W. Meijer, Sep 25 2012
A201862
Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.
Original entry on oeis.org
1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0
-
knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
*Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
*Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]
A351409
a(n) = n*(n!)^(2*n-2).
Original entry on oeis.org
1, 8, 3888, 764411904, 214990848000000000, 224634374557469245440000000000, 1880461634768804771224006806208512000000000000, 240091793104790737576620139562796649430329798636339200000000000000, 813675117804798213250391541747787241264315446434692481270971279693253181440000000000000000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..20
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 7, Symmetries].
A090441
Symmetric triangle of certain normalized products of decreasing factorials.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 12, 6, 1, 1, 24, 144, 144, 24, 1, 1, 120, 2880, 8640, 2880, 120, 1, 1, 720, 86400, 1036800, 1036800, 86400, 720, 1, 1, 5040, 3628800, 217728000, 870912000, 217728000, 3628800, 5040, 1, 1, 40320, 203212800, 73156608000
Offset: 0
Rows for n = 0, 1, 2, 3, ...:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 6, 12, 6, 1;
...
- Donald Knuth, Two Notes on Notation, arXiv:math/9205211 [math.HO], 1992. (Page 16-17 explain and give examples; the case with Narayana numbers come from tying together the poset P_k's 'shoelaces' with inequalities, into a 2 X k rectangle.)
- Wolfdieter Lang, First 9 rows
- Richard P. Stanley, Ordered Structures and Partitions, 1971.
-
spf(n) = prod(k=2, n, k!);
T(n,m) = spf(n-1)/spf(m-1)/spf(n-m-1);
row(n) = vector(n+1, k, T(n, k-1)); \\ Michel Marcus, Apr 13 2025
A130182
Coefficients of the v=1 member of a family of certain orthogonal polynomials.
Original entry on oeis.org
1, -2, 1, 0, -2, 1, 0, -12, 4, 1, 0, -144, 28, 20, 1, 0, -2880, 216, 508, 50, 1, 0, -86400, -2592, 17400, 2548, 98, 1, 0, -3628800, -449280, 788688, 153760, 8568, 168, 1, 0, -203212800, -42405120, 46032768, 11269008, 811648, 23016, 264, 1, 0, -14631321600, -4187635200, 3372731136
Offset: 0
Triangle begins:
[1];
[-2,1];
[0,-2,1];
[0,-12,4,1];
[0,-144,28,20,1];
[0,-2880,216,508,50,1];
...
Row n=5:[0,-2880,216,508,50,1]; pt(5,2,x)= x*(-2880+216*x+508*x^2+50*x^3+1*x^4)= x*(x-2)*(1440+612*x+52*x^2+x^3). pt(5,1,x) has the guaranteed integer zero x=2 (and also x=0 and some other three zeros).
Row n=1:[ -2,1]. pt(1,1,x)=-2+x with integer zero x=2.
Cf.
A129065 (a v=1 member of a similar family).
A134435
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k odd entries that are followed by a smaller entry (n >= 0, k >= 0).
Original entry on oeis.org
1, 1, 2, 2, 4, 12, 12, 12, 72, 36, 144, 432, 144, 144, 1728, 2592, 576, 2880, 17280, 17280, 2880, 2880, 57600, 172800, 115200, 14400, 86400, 864000, 1728000, 864000, 86400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
Offset: 0
T(3,1) = 4 because we have 132, 312, 231 and 321.
Triangle starts:
1;
1;
2;
2, 4;
12, 12;
12, 72, 36;
144, 432, 144;
...
Bisection of column k=0 gives
A010790.
-
T:=proc(n, k) if `mod`(n, 2)=0 then binomial((1/2)*n-1, k)*binomial((1/2)* n+1, k+1)*factorial((1/2)*n)^2 elif `mod`(n, 2)=1 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)* n+1/2, k) else 0 end if end proc: for n from 0 to 11 do seq(T(n, k), k=0..max(0,ceil((1/2)*n)-1)) end do; # yields sequence in triangular form
-
T[n_,k_]:=If[EvenQ[n],((n/2)!)^2Binomial[n/2-1,k]Binomial[n/2+1,k+1], ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2,k]Binomial[(n+1)/2,k]]; Table[T[n,k],{n,11},{k,0,Floor[(n-1)/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
A344669
a(n) is the number of preference profiles in the stable marriage problem with n men and n women that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 2, 1092, 144, 507254400
Offset: 1
For n=2, there are 16 possible preference profiles: 14 of them generate one stable matching and 2 of them generate two stable matchings. Thus, a(2) = 2.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
Previous
Showing 11-20 of 50 results.
Next
Comments