cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A168181 Characteristic function of numbers that are not multiples of 8.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

Multiplicative with a(p^e) = (if p=2 then A019590(e) else 1), p prime and e>0.
Period 8 Repeat: [0, 1, 1, 1, 1, 1, 1, 1]. - Wesley Ivan Hurt, Jun 21 2014

Examples

			G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + ...
		

Crossrefs

Programs

Formula

a(n+8) = a(n);
a(n) = A000007(A010877(n));
a(A047592(n)) = 1; a(A008590(n)) = 0;
A033440(n) = Sum_{k=0..n} a(k)*(n-k).
Dirichlet g.f. (1-1/8^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 8). - Wesley Ivan Hurt, Jun 21 2014
a(n) = sign( 1 - floor(cos(Pi*n/4)) ). - Wesley Ivan Hurt, Jun 21 2014
Euler transform of length 8 sequence [ 1, 0, 0, 0, 0, 0, -1, 1]. - Michael Somos, Jun 24 2014
Moebius transform is length 8 sequence [ 1, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Jun 24 2014
G.f.: x * (1 - x^7) / ((1 - x) * (1 - x^8)). - Michael Somos, Jun 24 2014
a(n) = 1-A253513(n). - Antti Karttunen, Oct 08 2017

A010075 a(n) = sum of base-8 digits of a(n-1) + sum of base-8 digits of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8
Offset: 0

Views

Author

Keywords

Comments

The digital sum analog (in base 8) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fib(n)=A000045(n) are congruent modulo 7 which implies that (a(n) mod 7) is equal to (Fib(n) mod 7). Thus (a(n) mod 7) is periodic with the Pisano period A001175(7)=16. - Hieronymus Fischer, Jun 27 2007
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds for n>2. Actually, a(n)<=11=A131319(8) for the base p=8. - Hieronymus Fischer, Jun 27 2007

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Total[IntegerDigits[a,8]]+Total[IntegerDigits[b,8]]}; NestList[ nxt,{0,1},100][[All,1]] (* or *) PadRight[{0,1,1},100,{7,8,8,2,3,5,8,6,7,13,13,12,11,9,6,8}] (* Harvey P. Dale, Apr 19 2020 *)

Formula

Periodic from n=3 with period 16. - Franklin T. Adams-Watters, Mar 13 2006
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = a(n-1)+a(n-2)-7*(floor(a(n-1)/8)+floor(a(n-2)/8)).
a(n) = floor(a(n-1)/8)+floor(a(n-2)/8)+(a(n-1)mod 8)+(a(n-2)mod 8).
a(n) = (a(n-1)+a(n-2)+7*(A010877(a(n-1))+A010877(a(n-2))))/8.
a(n) = Fib(n)-7*sum{1A000045(n). (End)

Extensions

Incorrect comment removed by Michel Marcus, Apr 29 2018

A130487 a(n) = Sum_{k=0..n} (k mod 9) (Partial sums of A010878).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 36, 37, 39, 42, 46, 51, 57, 64, 72, 72, 73, 75, 78, 82, 87, 93, 100, 108, 108, 109, 111, 114, 118, 123, 129, 136, 144, 144, 145, 147, 150, 154, 159, 165, 172, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 216, 217, 219, 222, 226
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j]=j mod 9, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,36];; for n in [11..71] do a[n]:=a[n-1]+a[n-9]-a[n-10]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,36]; [n le 10 select I[n] else Self(n-1) + Self(n-9) - Self(n-10): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3), x, n+1), x, n), n = 0 .. 70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[PadRight[{},120,Range[0,8]]] (* Harvey P. Dale, Dec 19 2018 *)
    Accumulate[Mod[Range[0,100],9]] (* Harvey P. Dale, Oct 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, k % 9); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130487_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-9*x^8+8*x^9)/((1-x^9)*(1-x)^3)).list()
    A130487_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 36*floor(n/9) + A010878(n)*(A010878(n) + 1)/2.
G.f.: (Sum_{k=1..8} k*x^k)/((1-x^9)*(1-x)).
G.f.: x*(1 - 9*x^8 + 8*x^9)/((1-x^9)*(1-x)^3).

A029581 Numbers in which all digits are composite.

Original entry on oeis.org

4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 89, 94, 96, 98, 99, 444, 446, 448, 449, 464, 466, 468, 469, 484, 486, 488, 489, 494, 496, 498, 499, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 689, 694, 696, 698, 699, 844, 846, 848
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=4,6,8,9 for k=1..4. - Hieronymus Fischer, May 30 2012

Examples

			From _Hieronymus Fischer_, May 30 2012: (Start)
a(1000) = 88649.
a(10^4) = 6468989
a(10^5) = 449466489. (End)
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | Set(Intseq(n)) subset [4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
  • Mathematica
    Table[FromDigits/@Tuples[{4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)

Formula

From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} (2*b(j) mod 8 + 4 + floor(b(j)/4) - floor((b(j)+1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Also: a(n) = Sum_{j=0..m-1} (A010877(2*b(j)) + 4 + A002265(b(j)) - A002265(b(j)+1))*10^j.
Special values:
a(1*(4^n-1)/3) = 4*(10^n-1)/9.
a(2*(4^n-1)/3) = 2*(10^n-1)/3.
a(3*(4^n-1)/3) = 8*(10^n-1)/9.
a(4*(4^n-1)/3) = 10^n-1.
a(n) < 4*(10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k > 0.
a(n) < 4*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > 2*A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = 1/10*10^log_4(3) = 0.62127870, for n --> inf.
lim sup a(n)/10^log_4(n) = 4/9*10^log_4(3) = 2.756123868970, for n --> inf.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(4 + 6z(j) + 8*z(j)^2 + 9*z(j)^3)/(1-z(j)^4), where z(j) = x^4^j.
Also: g(x) = (1/(1-x))*(4*h_(4,0)(x) + 2*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*(x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.039691381254753739202528087006945643166147087095114911673083135126969046250... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 03 2011

A099549 Odd part of n modulo 8.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 1, 5, 3, 3, 5, 7, 7, 1, 1, 1, 3, 5, 5, 3, 7, 3, 1, 5, 3, 7, 5, 7, 7, 1, 1, 1, 3, 1, 5, 3, 7, 5, 1, 5, 3, 3, 5, 7, 7, 3, 1, 1, 3, 5, 5, 3, 7, 7, 1, 5, 3, 7, 5, 7, 7, 1, 1, 1, 3, 1, 5, 3, 7, 1, 1, 5, 3, 3, 5, 7, 7, 5, 1, 1, 3, 5, 5, 3, 7, 3, 1, 5, 3, 7, 5, 7, 7, 3, 1, 1, 3, 1, 5, 3
Offset: 1

Views

Author

Ralf Stephan, Oct 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[n / 2^IntegerExponent[n, 2], 8]; Array[a, 100] (* Amiram Eldar, Aug 29 2024 *)
  • PARI
    a(n) = (n>>valuation(n, 2))%8 \\Charles R Greathouse IV, May 14 2014

Formula

a(n) = A010877(A000265(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Aug 29 2024

A130488 a(n) = Sum_{k=0..n} (k mod 10) (Partial sums of A010879).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 45, 46, 48, 51, 55, 60, 66, 73, 81, 90, 90, 91, 93, 96, 100, 105, 111, 118, 126, 135, 135, 136, 138, 141, 145, 150, 156, 163, 171, 180, 180, 181, 183, 186, 190, 195, 201, 208, 216, 225, 225, 226, 228, 231, 235, 240, 246, 253
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 10, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,15,21,28,36,45,45];; for n in [12..61] do a[n]:=a[n-1]+a[n-10]-a[n-11]; od; a; # G. C. Greubel, Aug 31 2019
    
  • Magma
    I:=[0,1,3,6,10,15,21,28,36,45,45]; [n le 11 select I[n] else Self(n-1) + Self(n-10) - Self(n-11): n in [1..61]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 31 2019
  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1}, {0,1,3,6,10,15,21,28,36,45, 45}, 60] (* G. C. Greubel, Aug 31 2019 *)
  • PARI
    a(n) = sum(k=0, n, k % 10); \\ Michel Marcus, Apr 28 2018
    
  • Python
    def A130488(n):
        a, b = divmod(n,10)
        return 45*a+(b*(b+1)>>1) # Chai Wah Wu, Jul 27 2022
  • Sage
    def A130488_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-10*x^9+9*x^10)/((1-x^10)*(1-x)^3)).list()
    A130488_list(60) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 45*floor(n/10) + A010879(n)*(A010879(n) + 1)/2.
G.f.: (Sum_{k=1..9} k*x^k)/((1-x^10)*(1-x)).
G.f.: x*(1 - 10*x^9 + 9*x^10)/((1-x^10)*(1-x)^3).

A130909 Simple periodic sequence (n mod 16).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Hieronymus Fischer, Jun 11 2007

Keywords

Comments

The value of the rightmost digit in the base-16 representation of n. Also, the equivalent value of the two rightmost digits in the base-4 representation of n. Also, the equivalent value of the four rightmost digits in the base-2 representation of n.

Crossrefs

Cf. partial sums A130910. Other related sequences A010872, A010873, A130481, A130482, A130483, A130486.
See A010877 for a general formula in terms of powers of -1 (for period 2^k).

Programs

Formula

a(n) = n mod 16 = n-16*floor(n/16).
G.f.: g(x) = (Sum_{k=1..15} k*x^k)/(1-x^16).
G.f.: g(x) = x(15x^16-16x^15+1)/((1-x^16)(1-x)^2).
a(n) = A000035(n) + 2*A010877(A004526(n)).
a(n) = A010873(n) + 4*A010873(A002265(n)).
a(n) = A010877(n) + 8*A000035(floor(n/8)).
a(n) = (1/2)*(15 - ( - 1)^n - 2*( - 1)^(b/4) - 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8) - 8*( - 1)^((b - 6 + ( - 1)^n + 2*( - 1)^(b/4) + 4*( - 1)^((b - 2 + 2*( - 1)^(b/4))/8))/16)) where b = 2n - 1 + ( - 1)^n.
a(n) = n mod 2+2*(floor(n/2)mod 2)+4*(floor(n/4)mod 2)+8*(floor(n/8)mod 2).
a(n) = (1/2)*(15-(-1)^n-2*(-1)^floor(n/2)-4*(-1)^floor(n/4)-8*(-1)^floor(n/= 8)).
Complex representation: a(n) = (1/16)*(1-r^n)*sum{1<=k<16, k*product{1<=m<16,m<>k, (1-r^(n-m))}} where r=exp(Pi/8*i)=(sqrt(2+sqrt(2))+i*sqrt(2-sqrt(2)))/2 and i=sqrt(-1).
Trigonometric representation: a(n) = 2^22*(sin(n*Pi/16))^2*sum{1<=k<16, k*product{1<=m<16,m<>k, (sin((n-m)*Pi/16))^2}}.
a(n) = (1/2)*(15-(-1)^p(0,n)-2*(-1)^p(1,n)-4*(-1)^p(2,n)-8*(-1)^p(3,n)) where p(k,n) is defined recursively by p(0,n)=n, p(k,n)=1/4*(2*p(k-1,n)-1+(-1)^p(k-1,n)).

A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010

Programs

  • Haskell
    a010887 = (+ 1) . flip mod 8
    a010887_list = cycle [1..8]
    -- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
    
  • Mathematica
    PadRight[{},90,Range[8]] (* Harvey P. Dale, May 10 2022 *)
  • Python
    def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)

A109011 a(n) = gcd(n,8).

Original entry on oeis.org

8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 1 + [2|n] + 2*[4|n] + 4*[8|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-8).
Multiplicative with a(p^e) = gcd(p^e, 8). - David W. Wilson, Jun 12 2005
G.f.: ( -8 - x - 2*x^2 - x^3 - 4*x^4 - x^5 - 2*x^6 - x^7 ) / ( (x-1)*(1+x)*(x^2+1)*(x^4+1) ). - R. J. Mathar, Apr 04 2011
Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 2/4^s + 4/8^s). - R. J. Mathar, Apr 04 2011
a(n) = 2^(-(101*m^7 - 2464*m^6 + 23786*m^ 5 -115360*m^4 + 293909*m^3 - 371056*m^2 + 186204*m - 15120)/5040) where m = (n mod 8). - Luce ETIENNE, Nov 18 2018

A253513 The characteristic function of the multiples of eight.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Mikael Aaltonen, Jan 03 2015

Keywords

Comments

Period 8: repeat [1, 0, 0, 0, 0, 0, 0, 0].

Crossrefs

Cf. A008590 (multiples of 8), A010877, A014025, A168181, A244413.

Programs

Formula

a(n) = floor(n/8) - floor((n-1)/8).
a(n) = sin((sin(Pi*(n+1)/2)^2)*Pi*(n+2)/4)/2 + (sin(Pi*(n+1)/2)^2)/4 + sin(Pi*(n+1)/2)/4.
a(n) = abs(A014025(n)).
From Alois P. Heinz, Jan 03 2015: (Start)
a(n) = 1 - A168181(n).
G.f.: 1/(1-x^8). (End)
Previous Showing 11-20 of 36 results. Next