cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 145 results. Next

A084218 a(n) = sigma_4(n^2)/sigma_2(n^2).

Original entry on oeis.org

1, 13, 73, 205, 601, 949, 2353, 3277, 5905, 7813, 14521, 14965, 28393, 30589, 43873, 52429, 83233, 76765, 129961, 123205, 171769, 188773, 279313, 239221, 375601, 369109, 478297, 482365, 706441, 570349, 922561, 838861, 1060033, 1082029
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[4](n^2)/sigma[2](n^2): seq(a(n),n=1..40); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[4, n^2]/DivisorSigma[2, n^2], {n, 1, 50}] (* G. C. Greubel, Oct 08 2018 *)
    f[p_, e_] := (p^(4*e + 2) + 1)/(p^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 35] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^4)/sumdiv(n^2,d,d^2)
    
  • PARI
    a(n) = sigma(n^2, 4)/sigma(n^2, 2); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(4*e + 2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.09957644430375183822287768590764825667080036406680891521221069625517483696... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(3)) = 0.172525... . - Amiram Eldar, Oct 30 2022
From Peter Bala, Jan 18 2024: (Start)
a(n) = Sum_{d divides n} J_2(d^2) = Sum_{d divides n} d^2 * J_2(d), where the Jordan totient function J_2(n) = A007434(n).
a(n) = Sum_{1 <= j, k <= n} ( n/gcd(j, k, n) )^2.
Dirichlet g.f.: zeta(s) * zeta(s-4) / zeta(s-2) [Corrected by Michael Shamos, May 18 2025]. (End)
a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_4(d). - Seiichi Manyama, May 18 2024

A244667 Decimal expansion of sum_(n>=1) (H(n)^3/(n+1)^2) where H(n) is the n-th harmonic number.

Original entry on oeis.org

9, 7, 5, 4, 2, 6, 2, 5, 1, 3, 8, 7, 2, 5, 7, 0, 5, 6, 5, 6, 8, 2, 3, 2, 6, 5, 8, 9, 9, 1, 2, 8, 8, 1, 8, 3, 2, 5, 1, 0, 2, 5, 8, 3, 6, 2, 9, 2, 4, 4, 8, 0, 2, 9, 8, 5, 0, 2, 2, 6, 7, 3, 6, 1, 3, 3, 3, 2, 4, 1, 9, 5, 7, 5, 4, 3, 7, 1, 5, 3, 4, 1, 9, 0, 2, 7, 0, 7, 6, 7, 1, 7, 0, 0, 2, 4, 9, 6, 3, 0, 2
Offset: 1

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			9.75426251387257056568232658991288183251025836292448029850226736133324...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); Pi(R)^2/6*Evaluate(L,3) + 15/2*Evaluate(L,5); // G. C. Greubel, Aug 31 2018
  • Mathematica
    RealDigits[15/2*Zeta[5] + Zeta[2]*Zeta[3], 10, 101] // First
  • PARI
    default(realprecision, 100); Pi^2/6*zeta(3) + 15/2*zeta(5) \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals Pi^2/6*zeta(3) + 15/2*zeta(5).

A008382 a(n) = floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 324, 432, 576, 768, 1024, 1280, 1600, 2000, 2500, 3125, 3750, 4500, 5400, 6480, 7776, 9072, 10584, 12348, 14406, 16807, 19208, 21952, 25088, 28672, 32768, 36864, 41472, 46656, 52488, 59049, 65610, 72900, 81000
Offset: 0

Views

Author

Keywords

Comments

For n >= 5, a(n) is the maximal product of 5 positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), this sequence (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

  • Mathematica
    CoefficientList[Series[x^5*(x^10 - 2*x^9 + 4*x^8 - 4*x^7 + 8*x^6 - 8*x^5 + 8*x^4 - 4*x^3 + 4*x^2 - 2*x + 1)*(1 + x)^2/((x^4 + x^3 + x^2 + x + 1)^4*(x - 1)^6), {x, 0, 60}], x] (* Wesley Ivan Hurt, Jun 29 2022 *)
  • Maxima
    A008382(n):=floor(n/5)*floor((n+1)/5)*floor((n+2)/5)*floor((n+3)/5)*floor((n+4)/5)$
    makelist(A008382(n),n,0,30); /* Martin Ettl, Oct 26 2012 */

Formula

From R. J. Mathar, May 08 2013: (Start)
a(n) = +2*a(n-1) -a(n-2) +4*a(n-5) -8*a(n-6) +4*a(n-7) -6*a(n-10) +12*a(n-11) -6*a(n-12) +4*a(n-15) -8*a(n-16) +4*a(n-17) -a(n-20) +2*a(n-21) -a(n-22).
G.f.: x^5 *(x^10 -2*x^9 +4*x^8 -4*x^7 +8*x^6 -8*x^5 +8*x^4 -4*x^3 +4*x^2 -2*x+1) *(1+x)^2 / ( (x^4+x^3+x^2+x+1)^4 *(x-1)^6 ). (End)
a(5*m) = m^5 (A000584). - Bernard Schott, Sep 21 2022
Sum_{n>=5} 1/a(n) = 1 + zeta(5). - Amiram Eldar, Jan 10 2023

A206623 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^3).

Original entry on oeis.org

1, 2, 18, 88, 398, 1768, 7508, 30644, 121310, 467234, 1756080, 6457168, 23274788, 82381584, 286760344, 982874120, 3320800590, 11070619228, 36446345198, 118581503192, 381552358872, 1214868568728, 3829841265428, 11959828895612, 37013411304892, 113570015855642
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023872 and A248882. - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^8/(1-x^2)^8 * (1+x^3)^27/(1-x^3)^27 *...
Also, A(x) = Euler transform of [2,15,54,120,250,405,686,960,1458,...]:
A(x) = 1/((1-x)^2*(1-x^2)^15*(1-x^3)^54*(1-x^4)^120*(1-x^5)^250*(1-x^6)^405*...).
		

Crossrefs

Cf. A156616, A206622, A206624, A001159 (sigma_4).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^3)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 4)-sigma(m, 4))/8*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+15*x+46*x^2+60*x^3+46*x^4+15*x^5+2*x^6)/(1-x^2+x*O(x^n))^4);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_4(2*n) - sigma_4(n))/8 * x^n/n ), where sigma_4(n) is the sum of 4th powers of divisors of n (A001159).
Inverse Euler transform has g.f.: x*(2 + 15*x + 46*x^2 + 60*x^3 + 46*x^4 + 15*x^5 + 2*x^6)/(1-x^2)^4.
a(n) ~ (93*Zeta(5))^(59/600) * exp(5/4 * (93*Zeta(5)/2)^(1/5) * n^(4/5) + Zeta'(-3)) / (2^(59/100) * sqrt(5*Pi) * n^(359/600)), where Zeta(5) = A013663, Zeta'(-3) = A259068. - Vaclav Kotesovec, Aug 19 2015

A284900 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^4.

Original entry on oeis.org

1, 15, 82, 239, 626, 1230, 2402, 3823, 6643, 9390, 14642, 19598, 28562, 36030, 51332, 61167, 83522, 99645, 130322, 149614, 196964, 219630, 279842, 313486, 391251, 428430, 538084, 574078, 707282, 769980, 923522, 978671, 1200644, 1252830, 1503652, 1587677
Offset: 1

Views

Author

Seiichi Manyama, Apr 05 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000583 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), this sequence (k=4), A284926 (k=5), A284927 (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^4, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 05 2017 *)
    f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); f[2, e_] := (7*2^(4*e + 1) + 1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^4); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**4 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{k>=1} k^4*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (7*2^(4*e+1)+1)/15, and a(p^e) = (p^(4*e+4) - 1)/(p^4 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^5, where c = 3*zeta(5)/16 = 0.194423... . (End)

A351267 Sum of the 4th powers of the squarefree divisors of n.

Original entry on oeis.org

1, 17, 82, 17, 626, 1394, 2402, 17, 82, 10642, 14642, 1394, 28562, 40834, 51332, 17, 83522, 1394, 130322, 10642, 196964, 248914, 279842, 1394, 626, 485554, 82, 40834, 707282, 872644, 923522, 17, 1200644, 1419874, 1503652, 1394, 1874162, 2215474, 2342084, 10642, 2825762, 3348388
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^4 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 17; a(4) = Sum_{d|4} d^4 * mu(d)^2 = 1^4*1 + 2^4*1 + 4^4*0 = 17.
		

Crossrefs

Cf. A008683 (mu), A013661, A013663.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), this sequence (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^4); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d^4)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) = Sum_{d|n} d^4 * mu(d)^2.
G.f.: Sum_{k>=1} mu(k)^2 * k^4 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^4. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Nov 10 2022

A351601 a(n) = n^3 * Sum_{d^2|n} 1 / d^3.

Original entry on oeis.org

1, 8, 27, 72, 125, 216, 343, 576, 756, 1000, 1331, 1944, 2197, 2744, 3375, 4672, 4913, 6048, 6859, 9000, 9261, 10648, 12167, 15552, 15750, 17576, 20412, 24696, 24389, 27000, 29791, 37376, 35937, 39304, 42875, 54432, 50653, 54872, 59319, 72000, 68921, 74088, 79507, 95832
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), this sequence (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013663.

Programs

  • Mathematica
    f[p_, e_] := p^3*(p^(3*e) - p^(3*Floor[(e - 1)/2]))/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^3*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^3))); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^3*(p^(3*e) - p^(3*floor((e-1)/2)))/(p^3 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(5)/4 = 0.259231... . - Amiram Eldar, Nov 13 2022

A352032 Sum of the 4th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 82, 1, 1, 82, 626, 1, 82, 1, 2402, 707, 1, 1, 6643, 1, 626, 2483, 14642, 1, 82, 626, 28562, 6643, 2402, 1, 51332, 1, 1, 14723, 83522, 3027, 6643, 1, 130322, 28643, 626, 1, 196964, 1, 14642, 57893, 279842, 1, 82, 2402, 391251, 83603, 28562, 1, 538084, 15267
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 626; a(10) = Sum_{d|10, d<10, d odd} d^4 = 1^4 + 5^4 = 626.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), this sequence (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(4*e+4) - 1)/(p^4 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^4, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^4 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
a(n) = A051001(n) - n^4*A000035(n).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)-1)/10 = 0.0036927755... . (End)

A352050 Sum of the 4th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 16, 81, 256, 625, 1312, 2401, 4096, 6642, 10016, 14641, 20992, 28561, 38432, 51331, 65536, 83521, 106288, 130321, 160256, 196963, 234272, 279841, 335872, 391250, 456992, 538083, 614912, 707281, 821312, 923521, 1048576, 1200643, 1336352, 1503651, 1700608, 1874161
Offset: 1

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^4 * Sum_{d|10, d<10, d odd} 1 / d^4 = 10^4 * (1/1^4 + 1/5^4) = 10016.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), this sequence (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^4, d = select(`<`,numtheory:-divisors(m),n))
    end proc:map(f, [$1..40]); # Robert Israel, Apr 03 2023
  • Mathematica
    A352050[n_]:=DivisorSum[n,1/#^4&,#A352050,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-4, n/2^IntegerExponent[n, 2]] * n^4 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^4 * sigma(n >> valuation(n, 2), -4) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^4 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^4 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051001(n) * A006519(n)^4 - A000035(n).
Sum_{k=1..n} a(k) = c * n^5 / 5, where c = 31*zeta(5)/32 = 1.00452376... . (End)

A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.

Original entry on oeis.org

1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
Offset: 1

Author

Vladeta Jovovic, Aug 31 2002

Keywords

Comments

Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006

Programs

  • Mathematica
    Table[(DivisorSigma[4,n]+6*DivisorSigma[3,n]+11*DivisorSigma[2,n]+ 6*DivisorSigma[ 1,n])/24,{n,40}] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 6*sigma(f, 3) + 11*sigma(f, 2) + 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (1/24) * (sigma_4(n) + 6*sigma_3(n) + 11*sigma_2(n) + 6*sigma_1(n)).
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 6*zeta(s-3) + 11*zeta(s-2) + 6*zeta(s-2)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007
Previous Showing 21-30 of 145 results. Next