cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A127408 Negative value of coefficient of x^(n-3) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

18, 144, 625, 1980, 5145, 11648, 23814, 45000, 79860, 134640, 217503, 338884, 511875, 752640, 1080860, 1520208, 2098854, 2850000, 3812445, 5031180, 6558013, 8452224, 10781250, 13621400, 17058600, 21189168, 26120619, 31972500, 38877255
Offset: 3

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-3) exists only for n>2, so the sequence starts with a(3). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>2) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-3) is -625, hence a(5) = 625.
		

References

  • Daniel Zwillinger, Ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-3) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Magma
    [ (n-2) * (n-1) * n^3 * (2*(n-2) + 14) / (2 * Factorial(4)) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Octave
    n * (n+1) * (n+2)^3 * (2*n + 14) / (2 * factorial(4)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-3)} \\ Klaus Brockhaus, Jan 26 2007
    
  • PARI
    a(n) = {(n^6+2*n^5-13*n^4+10*n^3)/4!} \\ Klaus Brockhaus, Jan 26 2007

Formula

a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1.
a(n) = (n^6+2*n^5-13*n^4+10*n^3)/4! for n>=3.
G.f.: x^3*(3-x)*(6+8*x+x^2)/(1-x)^7. - Colin Barker, May 13 2012

Extensions

Edited and extended by Klaus Brockhaus, Jan 26 2007

A127409 Negative value of coefficient of x^(n-4) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

160, 1750, 10044, 40817, 132608, 367416, 903000, 2020458, 4191264, 8168446, 15107092, 26719875, 45473792, 74834816, 119567664, 186098388, 282948000, 421245846, 615331948, 883458037, 1248597504, 1739375000, 2391126920
Offset: 4

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-4) exists only for n>3, so the sequence starts with a(4). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>3) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-4) is -1750, hence a(5) = 1750.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-4) : n in [4..26] ];  // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-3)*(n-2)*(n-1)*n^4*(3*n+13) / (2 * Factorial(5)) : n in [4..26] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3)^4 * (3*n + 22) / (2 * factorial(5)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-4)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(3*n^8 - 5*n^7 - 45*n^6 + 125*n^5 - 78*n^4)/(2*5!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+3) = n*(n+1)*(n+2)*(n+3)^4*(3*n+22)/(2*5!) for n>=1.
a(n) = (3*n^8-5*n^7-45*n^6+125*n^5-78*n^4)/(2*5!) for n>=4.
G.f.: x^4*(160+310*x+54*x^2-19*x^3-x^4)/(1-x)^9. - Colin Barker, May 13 2012

Extensions

Edited, corrected and extended by Klaus Brockhaus, Jan 27 2007

A127412 Triangular table containing values of coefficients of the characteristic polynomial of a certain n x n circulant matrix, read by rows.

Original entry on oeis.org

1, 1, -1, 1, -2, -3, 1, -3, -15, -18, 1, -4, -44, -144, -160, 1, -5, -100, -625, -1750, -1875, 1, -6, -195, -1980, -10044, -25920, -27216, 1, -7, -343, -5145, -40817, -184877, -453789, -470596, 1, -8, -560, -11648, -132608, -917504, -3866624, -9175040, -9437184, 1, -9, -864, -23814, -367416, -3582306
Offset: 0

Views

Author

Paul Max Payton, Feb 09 2007

Keywords

Comments

This is a lower triangular table.

Examples

			The third row represents the coefficients of the characteristic polynomial of [1 2 3; 3 1 2; 2 3 1], which is x^3 - 3*x^2 - 15*x - 18. Thus the row reads 1,-3,-15,-18.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Formula

First column is unity. Second column (A127407) is a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1. Third column (A127408) is a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1. In general, k-th column is given by a(n+(k-1)) = n*(n+1)*(n+2)*...*(n+(k-1))^k*((k-1)n+S(k))/(2 * (k+1)!) for n>=1, where S(k) is the k-th term of A014206.

A241199 Numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2.

Original entry on oeis.org

14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

From Robert Israel, Apr 28 2015: (Start)
Numbers n >= 14 such that 3*n + 7 is a square.
This is because
C(n,i+3) - 3*C(n,i+2) + 3*C(n,i+1) - C(n,i) = n!/((n-i)!*(i+3)!) * g(n,i)
where g(n,i) = (n-3-2*i) * ((n-3-2*i)^2 - 3*n - 7). (End)

Examples

			Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 terms beginning with 91 equal 182 - 273*x + 182*x^2 for x = 1..4.
		

Crossrefs

Sequence A241200 gives the position of the first of the 4 terms. Sequence A008865 gives the terms greater than 2 for which 3 consecutive terms satisfy a linear relation.
A014206 is a related sequence. - Avi Friedlich, Apr 28 2015
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).

Programs

  • Maple
    map(k -> (3*k^2+8*k+3,3*k^2+10*k+6),[$1..100]); # Robert Israel, Apr 28 2015
  • Mathematica
    Select[Range[2500], MemberQ[Differences[Binomial[#, Range[0, #/2]], 3], 0] &]
    LinearRecurrence[{1,2,-2,-1,1},{14,19,31,38,54},50] (* Harvey P. Dale, Oct 29 2017 *)
  • PARI
    Vec(-x*(6*x^4-3*x^3-16*x^2+5*x+14)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015
    
  • PARI
    a(n)=(6*n^2+42*n+55-(-1)^n*(2*n+7))/8 \\ Charles R Greathouse IV, Apr 15 2016

Formula

a(n) = (55-7*(-1)^n-2*(-21+(-1)^n)*n+6*n^2)/8. G.f.: -x*(6*x^4-3*x^3-16*x^2+5*x+14) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 14, 19, 31, 38, 54. - T. D. Noe, Apr 18 2014
Numbers are of the form A200182(3n+1) and A200182(3n-1). - Avi Friedlich, Apr 25 2015
a(2*k-1) = 3*k^2 + 8*k + 3, a(2*k) = 3*k^2 + 10*k + 6. - Robert Israel, Apr 28 2015

A271649 a(n) = 2*(n^2 - n + 2).

Original entry on oeis.org

4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 11 2016

Keywords

Comments

Numbers n such that 2*n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016

Examples

			a(1) = 2*(1^2 - 1 + 2) = 4.
		

Crossrefs

Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

Programs

  • Magma
    [ 2*n^2 - 2*n + 4: n in [1..60]];
    
  • Magma
    [ n: n in [1..6000] | IsSquare(2*n-7)];
    
  • Maple
    A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
  • Mathematica
    Table[2 (n^2 - n + 2), {n, 53}] (* or *)
    Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
    Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
    LinearRecurrence[{3,-3,1},{4,8,16},60] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A300401 Array T(n,k) = n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1) read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 4, 4, 3, 4, 7, 8, 7, 4, 5, 11, 14, 14, 11, 5, 6, 16, 22, 24, 22, 16, 6, 7, 22, 32, 37, 37, 32, 22, 7, 8, 29, 44, 53, 56, 53, 44, 29, 8, 9, 37, 58, 72, 79, 79, 72, 58, 37, 9, 10, 46, 74, 94, 106, 110, 106, 94, 74, 46, 10, 11, 56, 92, 119
Offset: 0

Views

Author

Keywords

Comments

Antidiagonal sums are given by 2*A055795.
Rows/columns n are binomial transform of {n, A152947(n+1), n, 0, 0, 0, ...}.
Some primes in the array are
n = 1: {2, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, ...} = A055469, primes of the form k*(k + 1)/2 + 1;
n = 3: {3, 7, 37, 53, 479, 653, 1249, 1619, 2503, 3727, 4349, 5737, 7109, 8179, 9803, 11839, 12107, ...};
n = 4: {11, 37, 79, 137, 211, 821, 991, 1597, 1831, 2081, 2347, ...} = A188382, primes of the form 8*(2*k - 1)^2 + 2*(2*k - 1) + 1.

Examples

			The array T(n,k) begins
0     1    2    3    4     5     6     7     8     9    10    11  ...
1     2    4    7   11    16    22    29    37    46    56    67  ...
2     4    8   14   22    32    44    58    74    92   112   134  ...
3     7   14   24   37    53    72    94   119   147   178   212  ...
4    11   22   37   56    79   106   137   172   211   254   301  ...
5    16   32   53   79   110   146   187   233   284   340   401  ...
6    22   44   72  106   146   192   244   302   366   436   512  ...
7    29   58   94  137   187   244   308   379   457   542   634  ...
8    37   74  119  172   233   302   379   464   557   658   767  ...
9    46   92  147  211   284   366   457   557   666   784   911  ...
10   56  112  178  254   340   436   542   658   784   920  1066  ...
11   67  134  212  301   401   512   634   767   911  1066  1232  ...
12   79  158  249  352   467   594   733   884  1047  1222  1409  ...
13   92  184  289  407   538   682   839  1009  1192  1388  1597  ...
14  106  212  332  466   614   776   952  1142  1346  1564  1796  ...
15  121  242  378  529   695   876  1072  1283  1509  1750  2006  ...
16  137  274  427  596   781   982  1199  1432  1681  1946  2227  ...
17  154  308  479  667   872  1094  1333  1589  1862  2152  2459  ...
18  172  344  534  742   968  1212  1474  1754  2052  2368  2702  ...
19  191  382  592  821  1069  1336  1622  1927  2251  2594  2956  ...
20  211  422  653  904  1175  1466  1777  2108  2459  2830  3221  ...
...
The inverse binomial transforms of the columns are
0     1    2    3    4     5     6     7     8     9    10    11  ...  A001477
1     1    2    4    7    11    22    29    37    45    56    67  ...  A152947
0     1    2    3    4     5     6     7     8     9    10    11  ...  A001477
0     0    0    0    0     0     0     0     0     0     0     0  ...
0     0    0    0    0     0     0     0     0     0     0     0  ...
0     0    0    0    0     0     0     0     0     0     0     0  ...
...
		

References

  • Miklós Bóna, Introduction to Enumerative Combinatorics, McGraw-Hill, 2007.
  • L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel Publishing Company, 1974.
  • R. P. Stanley, Enumerative Combinatorics, second edition, Cambridge University Press, 2011.

Crossrefs

Programs

  • Maple
    T := (n, k) -> n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1);
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    T[n_, k_] := n (Binomial[k, 2] + 1) + k (Binomial[n, 2] + 1);
    Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 07 2018 *)
  • Maxima
    T(n, k) := n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1)$
    for n:0 thru 20 do
      print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n, k) = n*(binomial(k,2) + 1) + k*(binomial(n,2) + 1);
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 12 2018

Formula

T(n,k) = T(k,n) = n*A152947(k+1) + k*A152947(n+1).
T(n,0) = A001477(n).
T(n,1) = A000124(n).
T(n,2) = A014206(n).
T(n,3) = A273465(3*n+2).
T(n,4) = A084849(n+1).
T(n,n) = A179000(n-1,n), n >= 1.
T(2*n,2*n) = 8*A081436(n-1), n >= 1.
T(2*n+1,2*n+1) = 2*A006000(2*n+1).
T(n,n+1) = A188377(n+3).
T(n,n+2) = A188377(n+2), n >= 1.
Sum_{k=0..n} T(k,n-k) = 2*(binomial(n, 4) + binomial(n, 2)).
G.f.: -((2*x*y - y - x)*(2*x*y - y - x + 1))/(((x - 1)*(y - 1))^3).
E.g.f.: (1/2)*(x + y)*(x*y + 2)*exp(x + y).

A027712 Numbers k such that k^2+k+2 is a palindrome.

Original entry on oeis.org

0, 1, 2, 4, 6, 14, 15, 21, 50, 92, 201, 203, 292, 479, 897, 1424, 1530, 1654, 2001, 2106, 2183, 16780, 20001, 20993, 28377, 89777, 200001, 219083, 501474, 1620660, 1651754, 2000001, 14842995, 17101809, 20000001, 21147906, 21855108, 22012038, 29287052
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 2; Select[Range[0, 10^5], palQ@ f@ # &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A059214 Square array T(k,n) = C(n-1,k) + Sum_{i=0..k} C(n,i) read by antidiagonals (k >= 1, n >= 1).

Original entry on oeis.org

2, 2, 4, 2, 4, 6, 2, 4, 8, 8, 2, 4, 8, 14, 10, 2, 4, 8, 16, 22, 12, 2, 4, 8, 16, 30, 32, 14, 2, 4, 8, 16, 32, 52, 44, 16, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 2, 4, 8, 16, 32, 64
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

For k > 1, gives maximal number of regions into which k-space can be divided by n hyperspheres.
The maximum number of subsets of a set of n points in k-space that can be formed by intersecting it with a hyperplane. - Günter Rote, Dec 18 2018

Examples

			Array begins
   2 4 6  8 10 12 ...
   2 4 8 14 22 32 ...
   2 4 8 16 30 52 ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Equals twice A216274.
Apart from left border, same as A059250. A178522 is probably the best version.

Programs

  • Mathematica
    A059214[k_,n_]:=Binomial[n-1,k]+Sum[Binomial[n,i],{i,0,k}];
    Table[A059214[k-n+1,n],{k,10},{n,k}] (* Paolo Xausa, Dec 29 2023 *)

Formula

T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i).

A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 3, 4, 2, 8, 9, 5, 7, 15, 16, 10, 6, 14, 24, 25, 17, 11, 13, 23, 35, 36, 26, 18, 12, 22, 34, 48, 49, 37, 27, 19, 21, 33, 47, 63, 64, 50, 38, 28, 20, 32, 46, 62, 80, 81, 65, 51, 39, 29, 31, 45, 61, 79, 99, 100, 82, 66, 52, 40, 30, 44, 60, 78, 98, 120
Offset: 0

Views

Author

Omar E. Pol, Feb 09 2013

Keywords

Comments

This sequence consists of 0 together with a permutation of the natural numbers. The nonnegative integers (A001477) are arranged in the successive layers from T(0,0) = 0. The n-th layer start with T(n,1) = n^2. The n-th layer is formed by the first n+1 elements of row n and the first n elements in increasing order of the column n.
The first antidiagonal is formed by odd numbers: 1, 3. The second antidiagonal is formed by even numbers: 4, 2, 8. The third antidiagonal is formed by odd numbers: 9, 5, 7, 15. And so on.
It appears that in the n-th layer there is at least a prime number <= g and also there is at least a prime number > g, where g is the number on the main diagonal, the n-th oblong number A002378(n), if n >= 1.

Examples

			The second layer is [4, 5, 6, 7, 8] which looks like this:
  .  .  8
  .  .  7,
  4, 5, 6,
Square array T(0,0)..T(10,10) begins:
    0,   3,   8,  15,  24,  35,  48,  63,  80,  99, 120,...
    1,   2,   7,  14,  23,  34,  47,  62,  79,  98, 119,...
    4,   5,   6,  13,  22,  33,  46,  61,  78,  97, 118,...
    9,  10,  11,  12,  21,  32,  45,  60,  77,  96, 117,...
   16,  17,  18,  19,  20,  31,  44,  59,  76,  95, 118,...
   25,  26,  27,  28,  29,  30,  43,  58,  75,  94, 117,...
   36,  37,  38,  39,  40,  41,  42,  57,  74,  93, 114,...
   49,  50,  51,  52,  53,  54,  55,  56,  73,  92, 113,...
   64,  65,  66,  67,  68,  69,  70,  71,  72,  91, 112,...
   81,  82,  83,  84,  85,  86,  87,  88,  89,  90, 111,...
  100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,...
  ...
		

Crossrefs

Column 1 is A000290. Main diagonal is A002378. Column 2 is essentially A002522. Row 1 is A005563. Row 2 gives the absolute terms of A008865.

Formula

From Petros Hadjicostas, Mar 10 2021: (Start)
T(n,k) = (A342354(n,k) - 1)/2.
O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)

Extensions

Name edited by Petros Hadjicostas, Mar 10 2021

A336535 a(n) = (m(n)^2 + 3)*(m(n)^2 + 7)/32, where m(n) = 2*n - 1.

Original entry on oeis.org

1, 6, 28, 91, 231, 496, 946, 1653, 2701, 4186, 6216, 8911, 12403, 16836, 22366, 29161, 37401, 47278, 58996, 72771, 88831, 107416, 128778, 153181, 180901, 212226, 247456, 286903, 330891, 379756, 433846, 493521, 559153, 631126, 709836, 795691, 889111, 990528, 1100386, 1219141, 1347261, 1485226, 1633528, 1792671
Offset: 1

Views

Author

Jeff Brown, Jul 24 2020

Keywords

Comments

For m(n) = 3,5,11, and 181, the perfect numbers (A000396), 6, 28, 496, and 33550336 are produced, respectively. 3,5,11, and 181 are the numbers m(n) such that (m(n)^2+7) is a power of 2. cf A038198.
The unique primitive Pythagorean triple whose inradius T(n) and its long leg and hypotenuse are consecutive natural numbers is (2*T(n)+1, 2*T(n)*(T(n)+1), 2*T(n)*(T(n)+1)+1) and its semiperimeter is (T(n)+1)*(2*T(n)+1) where T(n) = A000217(n). - Miguel-Ángel Pérez García-Ortega, May 16 2025

Examples

			m(2) = 2*2-1 = 3 and (3^2+3)*(3^2+7)/32 = 6, so 6 is in the sequence.
		

References

  • David M. Burton, Elementary Number Theory, McGraw-Hill (2011), 25.

Crossrefs

Programs

Formula

From Stefano Spezia, Jul 25 2020: (Start)
O.g.f.: x*(1 + x + 8*x^2 + x^3 + x^4)/(1 - x)^5.
a(n) = (1 - n + n^2)*(2 - n + n^2)/2.
a(n) = A002061(n)*A014206(n-1)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
a(n) = (A000217(n-1)+1)*(2*A000217(n-1)+1). - Miguel-Ángel Pérez García-Ortega, May 16 2025
Previous Showing 21-30 of 50 results. Next