cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 62 results. Next

A128461 Numbers k such that 21^k - 2 is a prime.

Original entry on oeis.org

1, 2, 4, 10, 21, 25, 27, 32, 60, 88, 106, 120, 146, 264, 828, 965, 1944, 4822, 12089, 14427, 17354, 42335, 46395, 58348, 190632
Offset: 1

Views

Author

Alexander Adamchuk, Mar 14 2007

Keywords

Comments

a(26) > 2*10^5. - Robert Price, Jul 14 2015

Crossrefs

Cf. A084714 (smallest prime of the form (2n-1)^k - 2).
Cf. A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).

Programs

  • Mathematica
    Do[ f = 21^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]

Extensions

2 more terms from Stefan Steinerberger, May 05 2007
a(17)-a(25) from Robert Price, Jul 14 2015

A191469 Numbers n such that 7^n - 6 is prime.

Original entry on oeis.org

2, 3, 6, 9, 21, 25, 33, 49, 54, 133, 245, 255, 318, 1023, 1486, 3334, 6821, 8555, 11605, 42502, 44409, 90291, 92511, 140303
Offset: 1

Views

Author

Vincenzo Librandi, Jun 06 2011

Keywords

Comments

a(14)=1023 and a(15)=1486 correspond to BPSW strong probable primes (passing PARI's ispseudoprime()). - Joerg Arndt, Jun 06 2011
a(25) > 2*10^5. - Robert Price, Nov 14 2014

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| IsPrime(7^n-6)]
    
  • Maple
    A191469:=n->`if`(isprime(7^n-6),n,NULL): seq(A191469(n), n=1..10^3); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    Select[Range[1,5000],PrimeQ[7^#-6]&] (* Vincenzo Librandi, Aug 05 2012 *)
  • PARI
    for(n=1, 10^6, if(isprime(7^n-6), print1(n, ", ")))

Extensions

a(17)-a(23) from Robert Price, Jan 24 2014
a(24) from Robert Price, Nov 14 2014

A075584 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 4.

Original entry on oeis.org

13, 79, 419, 461, 569, 659, 857, 1019, 1049, 1091, 1229, 1289, 1301, 1319, 1427, 1481, 1721, 1931, 1949, 2129, 2141, 2339, 2549, 2789, 2969, 3119, 3299, 3329, 3359, 3389, 3539, 3821, 3929, 4001, 4019, 4091, 4157, 4217, 4229, 4241, 4259, 4421, 4649, 4787
Offset: 1

Views

Author

Amarnath Murthy, Sep 26 2002

Keywords

Comments

It seems that for n > 2, a(n) + 2 is prime. Any counterexample p must have p > 3^1000000 and p+4 prime, and {p+1, p+2, p+3} must contain a power of 2 or 3. (The case where p+1 and p+3 are 3-smooth case can be ruled out via Catalan's conjecture/Mihăilescu's theorem.) In particular known Mersenne factorizations rule out the Fermat case below 2^144115188075855872 - 3, GIMPS rules out the Mersenne case below 2^36046457 - 1, and the exponents in A014224 rule out the remaining case below 3^1000000 - 2. - Charles R Greathouse IV, Jun 01 2016

Examples

			For p = 79, the next prime number is 83. The numbers between 79 and 83 and the prime divisors are respectively  80 { 2, 5 }, 81 { 3 }, 82 { 2, 41 }. The set of prime divisors is { 2, 3, 5, 41 } and has 4 elements, so 79 is a term. - _Marius A. Burtea_, Sep 26 2019
		

Crossrefs

Programs

  • Magma
    a:=[]; for p in PrimesInInterval(2,4800) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 4 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
  • Mathematica
    Select[Prime@ Range@ 650, Length@ Union@ Flatten@ Map[First /@ FactorInteger@ # &, Select[Range[#, NextPrime@ #], CompositeQ]] == 4 &] (* Michael De Vlieger, May 27 2016 *)
    Join[{13,79},Select[Prime[Range[23,650]],PrimeQ[#+2]&&PrimeNu[#+1]==4&]] (* This program assumes the correctness of the conjecture by Charles R. Greathouse, IV, in the Comments. *) (* Harvey P. Dale, Jun 07 2019 *)
  • PARI
    lista(nn)=forprime(p=2, nn, allp = []; forcomposite (c = p+1, nextprime(p+1), allp = Set(concat(allp, (factor(c)[,1])~));); if (#allp == 4, print1(p, ", "));); \\ Michel Marcus, May 28 2016
    
  • PARI
    is(n)=if(!isprime(n), return(0)); if(isprime(n+2), return(omega(n+1)==4)); if(isprime(n+4), omega(n+1)+omega(n+2)+omega(n+3)==5, 0)
    list(lim)=my(v=List(),t,p); lim\=1; for(e=4,logint(lim+2,3), p=precprime(3^e); if(isprime(p+4) && is(p), listput(v,p))); for(e=4,logint(lim+3,2), p=precprime(2^e); if(isprime(p+4) && is(p), listput(v,p))); p=2; forprime(q=3,lim+2, if(q-p==2 && omega(p+1)==4, listput(v,p)); p=q); Set(v) \\ Charles R Greathouse IV, Jun 01 2016
    

Extensions

More terms from Matthew Conroy, Apr 30 2003
Name edited by Michel Marcus, May 28 2016
Typo in name fixed by Daria Micovic, Jun 01 2016

A164783 a(n) = 7^n-6.

Original entry on oeis.org

1, 43, 337, 2395, 16801, 117643, 823537, 5764795, 40353601, 282475243, 1977326737, 13841287195, 96889010401, 678223072843, 4747561509937, 33232930569595, 232630513987201, 1628413597910443, 11398895185373137
Offset: 1

Views

Author

Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009

Keywords

Comments

Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers.

References

  • Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
  • Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
  • Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)

Crossrefs

Programs

Formula

a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - Vincenzo Librandi, Nov 30 2010
G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - Colin Barker, Mar 08 2012
a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - Vincenzo Librandi, Feb 06 2013
a(n) = A000420(n) - 6 for n>0. - Michel Marcus, Aug 31 2013

Extensions

More terms a(8)-a(19) from Vincenzo Librandi, Oct 29 2009

A080892 Numbers k such that 3^k-2 is a semiprime.

Original entry on oeis.org

3, 8, 10, 12, 13, 15, 16, 19, 20, 21, 25, 28, 39, 42, 44, 48, 55, 57, 60, 66, 67, 76, 78, 85, 118, 130, 156, 162, 193, 212, 214, 217, 218, 228, 244, 312, 330, 352, 357, 376, 386, 388, 412, 442, 449, 464, 480, 525, 545, 552, 630, 644
Offset: 1

Views

Author

Hugo Pfoertner, Mar 30 2003

Keywords

Comments

The next roadblock to being able to extend the sequence is 3^658 - 2, a 314-decimal digit composite with no known factors. - Ryan Propper, Feb 07 2013

Examples

			a(1) = 3 because 3^3-2 = 25 = 5*5.
a(2) = 8 because 3^8-2 = 6559 = 7*937.
a(3) = 10 because 3^10-2 = 59047 = 137*431.
		

Crossrefs

Programs

  • Mathematica
    Do[f = 3^n - 2; If[ !PrimeQ[f], s = FactorIntegerECM[f]; If[PrimeQ[s] && PrimeQ[f/s], Print[n]]], {n, 2, 10^3}] (* Ryan Propper, May 11 2007 *)
  • PARI
    for(n=1,200,if(bigomega(3^n-2)==2,print1(n","))) /* Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 02 2007 */

Extensions

Added missing a(1)=3 by Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 01 2007
a(27)-a(42) from Herman Jamke (hermanjamke(AT)fastmail.fm) and Ryan Propper, Apr 01, Apr 19 2007, May 11 2007
Restored missing terms < 388 by Sean A. Irvine, Apr 06 2011 (Some correctly stated terms in Jamke's and Propper's list had been omitted during editing)
a(43)-a(47) from Sean A. Irvine, Jun 13 2012
a(48) from Ryan Propper, Sep 30 2012
a(49)-a(52) from Ryan Propper, Feb 07 2013

A095303 Smallest number k such that k^n - 2 is prime.

Original entry on oeis.org

4, 2, 9, 3, 3, 3, 7, 7, 3, 21, 9, 7, 19, 5, 7, 39, 15, 61, 15, 19, 21, 3, 19, 17, 21, 5, 21, 7, 85, 17, 7, 21, 511, 27, 27, 59, 3, 19, 91, 45, 3, 29, 321, 65, 9, 379, 69, 125, 49, 5, 9, 45, 289, 341, 61, 89, 171, 171, 139, 21, 139, 75, 25, 49, 15, 51, 57, 175, 31, 137, 147, 25, 441
Offset: 1

Views

Author

Hugo Pfoertner, Jun 01 2004

Keywords

Comments

The Bunyakovsky conjecture implies a(n) exists for all n. - Robert Israel, Jul 15 2018
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 16 2019

Examples

			a(1) = 4 because 4^1 - 2 = 2 is prime, a(3) = 9 because 3^3 - 2 = 25, 5^3 - 2 = 123 and 7^3 - 2 = 341 = 11 * 31 are composite, whereas 9^3 - 2 = 727 is prime.
		

Crossrefs

Cf. A095304 (corresponding primes), A087576 (smallest k such that k^n+2 is prime), A095302 (corresponding primes).
Cf. A014224.

Programs

  • Maple
    f:= proc(n) local k;
      for k from 3 by 2 do
        if isprime(k^n-2) then return k fi
      od
    end proc:
    f(1):= 4: f(2):= 2:
    map(f, [$1..100]); # Robert Israel, Jul 15 2018
  • Mathematica
    a095303[n_] := For[k = 1, True, k++, If[PrimeQ[k^n - 2], Return[k]]]; Array[a095303, 100] (* Jean-François Alcover, Mar 01 2019 *)
  • PARI
    for (n=1,73,for(k=1,oo,if(isprime(k^n-2),print1(k,", ");break))) \\ Hugo Pfoertner, Oct 28 2018

Extensions

a(2) and a(46) corrected by T. D. Noe, Apr 03 2012

A080798 Largest prime factor of 3^n-2.

Original entry on oeis.org

7, 5, 79, 241, 727, 23, 937, 19681, 431, 499, 4703, 8093, 40193, 2869781, 483671, 94747, 4657, 232452293, 498112057, 2812679, 31381059607, 3765727153, 1364071, 44594137339, 125231, 13170403, 5353801183, 4159349, 46050353857, 294487079, 26892769, 29178816413, 3533781113
Offset: 2

Views

Author

Hugo Pfoertner, Mar 25 2003

Keywords

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(3^n-2)):n in [2..30]]; // Marius A. Burtea, Jul 12 2019
  • Mathematica
    FactorInteger[#][[-1,1]]&/@(3^Range[2,30]-2) (* Harvey P. Dale, Apr 07 2022 *)
  • PARI
    a(n) = vecmax(factor(3^n-2)[,1]); \\ Michel Marcus, Jul 12 2019
    

Formula

a(n) = A006530(A058481(n)). - Michel Marcus, Jul 12 2019

A086218 Primes p such that 3^p - 2 is prime.

Original entry on oeis.org

2, 5, 37, 41, 317, 541, 2521
Offset: 1

Views

Author

Cino Hilliard, Aug 28 2003

Keywords

Comments

a(8) > 1180181, if it exists (based on the data at A014224). - Amiram Eldar, Jul 07 2024

Crossrefs

Subsequence of prime terms of A014224.

Programs

Formula

a(n) = prime(A089919(n)). - Amiram Eldar, Jul 07 2024

Extensions

a(7) from Jorge Coveiro, Apr 10 2004

A130652 a(n) = 11^n - 2.

Original entry on oeis.org

9, 119, 1329, 14639, 161049, 1771559, 19487169, 214358879, 2357947689, 25937424599, 285311670609, 3138428376719, 34522712143929, 379749833583239, 4177248169415649, 45949729863572159, 505447028499293769, 5559917313492231479, 61159090448414546289, 672749994932560009199
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

There are only two known primes in a(n): a(4) = 14639 and a(6) = 1771559 (see A128472 = smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists). 3 divides a(2k-1). 7 divides a(3k-1). 13 divides a(12k-5). 17 divides a(16k-14).
Final digit of a(n) is 9.
Final two digits of a(n) are periodic with period 10: a(n) mod 100 = {09, 19, 29, 39, 49, 59, 69, 79, 89, 99}.
Final three digits of a(n) are periodic with period 50: a(n) mod 1000 = {009, 119, 329, 639, 049, 559, 169, 879, 689, 599, 609, 719, 929, 239, 649, 159, 769, 479, 289, 199, 209, 319, 529, 839, 249, 759, 369, 079, 889, 799, 809, 919, 129, 439, 849, 359, 969, 679, 489, 399, 409, 519, 729, 039, 449, 959, 569, 279, 089, 999}.

Crossrefs

Cf. A001020, A024127, A034524. Cf. A104096 = Largest prime <= 11^n. Cf. A084714 = smallest prime of the form (2n-1)^k - 2, or 0 if no such number exists. Cf. A128472 = smallest prime of the form (2n-1)^k - 2 for k>(2n-1), or 0 if no such number exists. Cf. A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461.

Programs

  • Magma
    [11^n - 2: n in [1..50]]; // Vincenzo Librandi, Jun 08 2011
  • Mathematica
    LinearRecurrence[{12, -11},{9, 119},17] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = 11*a(n-1) + 20; a(1)=9. - Vincenzo Librandi, Jun 08 2011
From Elmo R. Oliveira, Jun 16 2025: (Start)
G.f.: x*(11*x+9)/((11*x-1)*(x-1)).
E.g.f.: 1 + exp(x)*(exp(10*x) - 2).
a(n) = 12*a(n-1) - 11*a(n-2) for n > 2. (End)

A133858 Primes of the form 11^k - 2.

Original entry on oeis.org

14639, 1771559
Offset: 1

Views

Author

Alexander Adamchuk, Sep 27 2007

Keywords

Comments

Last digit of all terms is 9.
The nest term (11^22420-2) is too large to be displayed; see A133982 for the corresponding k. - Joerg Arndt, Nov 28 2020

Examples

			a(1) = 11^4 - 2 = 14639,
a(2) = 11^6 - 2 = 1771559.
		

Crossrefs

Cf. A104096 (largest prime <= 11^n), A130652, A128472, A084714 (smallest prime of the form (2n-1)^k - 2).
Previous Showing 31-40 of 62 results. Next