cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 102 results. Next

A054878 Number of closed walks of length n along the edges of a tetrahedron based at a vertex.

Original entry on oeis.org

1, 0, 3, 6, 21, 60, 183, 546, 1641, 4920, 14763, 44286, 132861, 398580, 1195743, 3587226, 10761681, 32285040, 96855123, 290565366, 871696101, 2615088300, 7845264903, 23535794706, 70607384121, 211822152360, 635466457083
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

Number of closed walks of length n at a vertex of C_4, the cyclic graph on 4 nodes. 3*A015518(n) + a(n) = 3^n. - Paul Barry, Feb 03 2004
Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]; a(n) corresponds to the (1,1) term of A^n. - Paul Barry, Oct 02 2004
Absolute values of A084567 (compare generating functions).
For n > 1, 4*a(n)=A218034(n)= the trace of the n-th power of the adjacency matrix for a complete 4-graph, a 4 X 4 matrix with a null diagonal and all ones for off-diagonal elements. The diagonal elements for the n-th power are a(n) and the off-diagonal are a(n)+1 for an odd power and a(n)-1 for an even (cf. A001045). - Tom Copeland, Nov 06 2012

Crossrefs

Row n=4 of A109502. A084567 (signed version).
{a(n)/3} for n>0 is A015518, non-closed walks.
Cf. A001045, A078008, A097073, A115341, A015518 (sequences where a(n)=3^n-a(n-1)). - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Programs

  • Magma
    [(3^n+(-1)^n*3)/4: n in [0..35]]; // Vincenzo Librandi, Jun 30 2011
    
  • Maple
    A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *)
    CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = (3^n + 3*(-1)^n)/4; \\ Altug Alkan, Sep 17 2017

Formula

a(n) = (3^n + (-1)^n*3)/4.
G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).
E.g.f.: (exp(3*x) + 3*exp(-x))/4. - Paul Barry, Apr 20 2003
a(n) = 3^n - a(n-1) with a(0)=0. - Labos Elemer, Apr 26 2003
G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)). - Paul Barry, Feb 03 2004
From Paul Barry, Oct 02 2004: (Start)
G.f.: (1-2*x)/(1 - 2*x - 3*x^2).
a(n) = 2*a(n-1) + 3*a(n-2). (End)
G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
a(n+m) = a(n)*a(m) + a(n+1)*a(m+1)/3. - Yuchun Ji, Sep 12 2017
a(n) = 3*a(n-1) + 3*(-1)^n. - Yuchun Ji, Sep 13 2017
From Peter Bala, May 28 2024: (Start)
a(n) = (-1)^n + Sum_{k = 1..n} (-1)^(n-k)*binomial(n, k)*4^(k-1).
G.f.: A(x) = 1/(1 - x^2) o 1/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A015575.
The black diamond product A(x) o A(x) is the g.f. for the number of closed walks of length n at a vertex along the edges of the 15-simplex. (End)

A083100 a(n) = 2*a(n-1) + 7*a(n-2).

Original entry on oeis.org

1, 9, 25, 113, 401, 1593, 5993, 23137, 88225, 338409, 1294393, 4957649, 18976049, 72655641, 278143625, 1064876737, 4076758849, 15607654857, 59752621657, 228758827313, 875786006225, 3352883803641, 12836269650857, 49142725927201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003

Keywords

Comments

a(n) = a(n-1) + 8*A015519(n). a(n)/A015519(n+1) converges to sqrt(8).
a(n-1) is the number of compositions of n when there is 1 type of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Essentially a duplicate of A084058.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1 + 7 x)/(1 - 2 x - 7 x^2), {x, 0, 25}], x] (* Or *) a[n_] := Simplify[((1 + Sqrt[8])^n + (1 - Sqrt[8])^n)/2]; Array[a, 25, 0] (* Or *) LinearRecurrence[{2, 7}, {1, 1}, 28] (* Or *) Table[ MatrixPower[{{1, 2}, {4, 1}}, n][[1, 1]], {n, 0, 25}] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 06 2016
    
  • PARI
    x='x+O('x^30); Vec((1+7*x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Jan 08 2018
    

Formula

G.f.: (1+7*x)/(1-2*x-7*x^2).
a(n) = binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
If p[1]=1, and p[i]=8,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

A015357 Gaussian binomial coefficient [ n,8 ] for q=-3.

Original entry on oeis.org

1, 4921, 36321901, 229798289941, 1526550040078063, 9974653139743515223, 65533580739687859229563, 429769342296322230713871283, 2820146424148466477944423359046, 18502040831058043147238631145734166
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-13: A015356, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369, A015370. - M. F. Hasler, Nov 03 2012
Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), this sequence (k = 8), A015375 (k = 9), A015388 (k = 10).

Programs

  • Magma
    r:=8; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 02 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -3], {n, 8, 20}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015357(n, r=8, q=-3)=prod(i=1, r, (1-q^(n-i+1))/(1-q^i)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-3) for n in range(8,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-3)^(n-i+1)-1)/((-3)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^8 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(9*n)/A015518(n) * x^n/n) = 1 + 4921*x + 36321901*x^2 + .... - Peter Bala, Jun 29 2025

A015375 Gaussian binomial coefficient [ n,9 ] for q=-3.

Original entry on oeis.org

1, -14762, 326882347, -6204226946060, 123644349019377043, -2423717068608654822146, 47771556642163840723529281, -939857780045414554730512966640, 18502040831058043147238631145734166, -364157167636884405223950738210339855212
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), this sequence (k = 9), A015388 (k = 10).

Programs

  • Magma
    r:=9; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -3],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-3) for n in range(9,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(19683*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(10*n)/A015518(n) * (-x)^n/n) = 1 - 14762*x + 326882347*x^2 + .... - Peter Bala, Jun 29 2025

A122983 a(n) = (2 + (-1)^n + 3^n)/4.

Original entry on oeis.org

1, 1, 3, 7, 21, 61, 183, 547, 1641, 4921, 14763, 44287, 132861, 398581, 1195743, 3587227, 10761681, 32285041, 96855123, 290565367, 871696101, 2615088301, 7845264903, 23535794707, 70607384121, 211822152361, 635466457083
Offset: 0

Views

Author

Paul Barry, Sep 22 2006

Keywords

Comments

Old definition was: "Binomial transform of aeration of A081294".
Binomial transform is A063376.
A122983 = (1,1,3,7,1,1,3,7,...) mod 10. - M. F. Hasler, Feb 25 2008
Equals row sums of triangle A158301. - Gary W. Adamson, Mar 15 2009
a(n) = the number of ternary sequences of length n where the numbers of (0's, 1's) are both even. A015518 covers the (odd, even) and (even, odd) cases, and A081251 covers (odd, odd). - Toby Gottfried, Apr 18 2010
This sequence also describes the number of moves of the k-th disk solving (non-optimally) the [RED ; NEUTRAL ; BLUE] pre-colored Magnetic Tower of Hanoi (MToH) puzzle. The sequence A183119 is the partial sums of the sequence in question (obviously describing the total number of moves associated with the specific solution algorithm). For other MToH-related sequences, Cf. A183111 - A183125.
Let B=[1,sqrt(2),0; sqrt(2),1,sqrt(2); 0,sqrt(2),1] be a 3 X 3 matrix. Then a(n)=[B^n](1,1), n=0,1,2,.... - _L. Edson Jeffery, Dec 21 2011
Also the domination number of the n-Hanoi graph. - Eric W. Weisstein, Jun 16 2017
Also the matching number of the n-Sierpinski gasket graph. - Eric W. Weisstein, Jun 17 2017
Let M = [1,1,1,0; 1,1,0,1; 1,0,1,1; 0,1,1,1], a 4 X 4 matrix. Then a(n) is the upper left entry in M^n. - Philippe Deléham, Aug 23 2020
Also the lower matching number (=independent domination number) of the n-Hanoi graph. - Eric W. Weisstein, Aug 01 2023

Crossrefs

Cf. a(j+1) = A137822(2^j) and these are the record values of A137822.
Cf. A054879 (bisection), A066443 (bisection). Row sums of A158303.

Programs

Formula

From Paul Barry, Jun 14 2007: (Start)
G.f.: (1-2*x-x^2)/((1-x)*(1+x)*(1-3*x));
a(n) = 3^n/4+(-1)^n/4+1/2;
E.g.f.: cosh(x)^2*exp(x). (End)
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3); a(0)=1, a(1)=1, a(2)=3. - Harvey P. Dale, Sep 03 2013
E.g.f.: Q(0)/2, where Q(k) = 1 + 3^k/( 2 - 2*(-1)^k/( 3^k + (-1)^k - 2*x*3^k/( 2*x + (k+1)*(-1)^k/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2013
a(2*n) = 3*a(2*n-1); a(2*n+1) = 3*a(2*n) - 2. - Philippe Deléham, Aug 23 2020

Extensions

Extended and corrected (existing Maple code) by M. F. Hasler, Feb 25 2008
Description changed to formula by Eric W. Weisstein, Jun 16 2017

A033113 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 3, 10, 30, 91, 273, 820, 2460, 7381, 22143, 66430, 199290, 597871, 1793613, 5380840, 16142520, 48427561, 145282683, 435848050, 1307544150, 3922632451, 11767897353, 35303692060, 105911076180, 317733228541, 953199685623
Offset: 1

Views

Author

Keywords

Comments

Written in base 3, this yields A056830. - M. F. Hasler, Oct 05 2018

Crossrefs

Programs

  • Magma
    [Round(3^(n+1)/8): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
  • Maple
    a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33);# Zerinvary Lajos, Dec 14 2008
    g:=x*(1/(1-3*x)/(1-x))/(1+x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=1..30);# Zerinvary Lajos, Jan 11 2009
    A033113 := proc(n) (9*3^(n-1)-(-1)^n-2)/8 ; end proc: # R. J. Mathar, Jan 08 2011
  • Mathematica
    Join[{a=1,b=3},Table[c=2*b+3*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    Module[{nn=30,d},d=PadRight[{},nn,{1,0}];Table[FromDigits[Take[d,n],3],{n,nn}]] (* or *) LinearRecurrence[{3,1,-3},{1,3,10},30] (* Harvey P. Dale, May 24 2014 *)
  • PARI
    a(n)=3^n*3\8 \\ Simplified by M. F. Hasler, Oct 06 2018
    
  • PARI
    A033113(n)=3^(n+1)>>3 \\ M. F. Hasler, Oct 05 2018
    

Formula

a(n) = A039300(n)-1.
a(n)+a(n+1) = A003462(n+1).
a(n) = 3*a(n-1) + a(n-2) -3*a(n-3). - R. J. Mathar, Jun 28 2010
From Paul Barry, Nov 12 2003: (Start)
G.f.: x/((1-x)*(1+x)*(1-3*x)).
a(n) = 2*a(n-1) + 3*a(n-2) + 1.
Partial sums of A015518. (End)
E.g.f.: (1/2)*exp(x)*(sinh(x))^2. - Paul Barry, Mar 12 2003
a(n) = Sum_{k=0..floor(n/2)} C(n+2, 2k+2)*4^k. - Paul Barry, Aug 24 2003
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*3^j. - Paul Barry, Nov 12 2003
Convolution of A000244 and A059841 (3^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*3^k/2. - Paul Barry, Jul 19 2004
a(n) = round(3^(n+1)/8) = floor((3^(n+1)-1)/8) = ceiling((3^(n+1)-3)/8) = round((3^(n+1)-3)/8). a(n) = a(n-2) + 3^(n-1), n > 2. - Mircea Merca, Dec 27 2010
a(n) = floor((3^(n+1))/4) / 2 = A081251(n)/2, n >= 1. - Wolfdieter Lang, Apr 13 2012

A109499 Number of closed walks of length n on the complete graph on 5 nodes from a given node.

Original entry on oeis.org

1, 0, 4, 12, 52, 204, 820, 3276, 13108, 52428, 209716, 838860, 3355444, 13421772, 53687092, 214748364, 858993460, 3435973836, 13743895348, 54975581388, 219902325556, 879609302220, 3518437208884, 14073748835532
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A108020 (bisection), A109502.

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Mar 23 2019
  • Magma
    [(4^n + 4*(-1)^n)/5: n in [0..30]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    CoefficientList[Series[(1-3*x)/(1-3*x-4*x^2), {x,0,30}], x] (* or *) LinearRecurrence[{3,4}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    a(n)=(4^n+4*(-1)^n)/5 \\ Charles R Greathouse IV, Oct 01 2012
    
  • Sage
    [(4^n+4*(-1)^n)/5 for n in (0..30)] # G. C. Greubel, Mar 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 3*x - 4*x^2).
a(n) = (4^n + 4*(-1)^n)/5.
a(n+1) = 4*A015521(n). - Paul Curtz, Nov 01 2009
a(n) = 3*a(n-1) + 4*a(n-1). - G. C. Greubel, Dec 30 2017
a(n) = A108020((n - 1) / 2) = 'ccc...c' (n digits) in base 16, for odd n. - Georg Fischer, Mar 23 2019
E.g.f.: (exp(4*x) + 4*exp(-x))/5. - G. C. Greubel, Mar 23 2019

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006

A014578 Binary expansion of Thue constant (or Roth's constant).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

a(0)=0; to construct the sequence start with a(1)=1, then concatenate twice and change the last term 1->0 giving 1,1,0. Concatenate those 3 terms twice giving 1,1,0,1,1,0,1,1,0, change the last term 0->1 giving 1,1,0,1,1,0,1,1,1. Concatenate those 9 terms twice and change the last term 1->0, etc. - Benoit Cloitre, Feb 09 2003
It is probably my fault if this constant is misattributed. It was "computed" circa 1971 by a very simple Life pattern (as a diagonal row of blinkers), an obvious case of the (Thue-Siegel-)Roth criterion for transcendence, since the error after 3^n bits is ~2^-3^(n+1) = O(denominator^-3). I probably should have called it Roth's constant. - Bill Gosper, Mar 19 2004
a(0) = 0; then fixed point of the morphism 1->110, 0->111, starting with a(1) = 1. - Philippe Deléham, Mar 21 2004
Characteristic function of A007417, i.e., a(n) = 1 if n is in A007417 and a(n) = 0 otherwise. - Philippe Deléham, Mar 21 2004
Multiplicative with a(3^e) = (e+1)%2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 10 2005
a(A145204(n)) = 0, a(A007417(n)) = 1. - Reinhard Zumkeller, Oct 04 2008
1 if the ternary representation of n has an even number of trailing zeros. - Ralf Stephan, Sep 02 2013

Examples

			Start: 1
Rules:
  1 --> 110
  0 --> 111
-------------
0:   (#=1)
  1
1:   (#=3)
  110
2:   (#=9)
  110110111
3:   (#=27)
  110110111110110111110110110
4:   (#=81)
  110110111110110111110110110110110111110110111110110110110110111110110111110110111
- _Joerg Arndt_, Jul 06 2011
		

Crossrefs

Cf. Thue-Morse or parity constant A010060.
Cf. A154271.

Programs

  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1, 1, 1}, 1 -> {1, 1, 0}}] &, {0}, 6] (* Robert G. Wilson v, Mar 09 2005 *)
  • PARI
    a(n)=if(n<1,0,sum(k=0,ceil(log(n)/log(3)),(-1)^k*(floor(n/3^k)-floor((n-1)/3^k))));
    
  • PARI
    A014578(n) = if(!n,n,valuation(n, 3)%2==0); \\ Ralf Stephan, Sep 02 2013, edited for the term a(0)=0 - Antti Karttunen, May 28 2024
    
  • Python
    from sympy import multiplicity
    def A014578(n): return multiplicity(3,n)&1^1 if n else 0 # Chai Wah Wu, Jan 28 2025

Formula

a(0)=0; for n>=1, a(n)=sum(k>=0, (-1)^k*(floor(n/3^k)-floor((n-1)/3^k))). - Benoit Cloitre, Jun 03 2003
a(0)=0, a(3k)=1-a(k); a(3k+1)=a(3k+2)=1. - Benoit Cloitre, Mar 19 2004
Sum_{k=0..3^n} a(k) = A015518(n+1) = (-1)^n*A014983(n+1). - Philippe Deléham, Mar 31 2004
a(n) = 1 - A007949(n) mod 2 for n>0. - Reinhard Zumkeller, Oct 04 2008
Let T(x) be the g.f., then T(x) + T(x^3) = x/(1-x). - Joerg Arndt, May 11 2010
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/4. - Amiram Eldar, Jul 13 2020

A073387 Convolution triangle of A002605(n) (generalized (2,2)-Fibonacci), n>=0.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 16, 16, 6, 1, 44, 56, 30, 8, 1, 120, 188, 128, 48, 10, 1, 328, 608, 504, 240, 70, 12, 1, 896, 1920, 1872, 1080, 400, 96, 14, 1, 2448, 5952, 6672, 4512, 2020, 616, 126, 16, 1, 6688, 18192, 23040, 17856, 9352, 3444, 896, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(2+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
T(n, k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length for the letters 0,1. - Milan Janjic, Jan 14 2017

Examples

			Lower triangular matrix, T(n,k), n >= k >= 0, else 0:
    1;
    2,    1;
    6,    4,    1;
   16,   16,    6,    1;
   44,   56,   30,    8,   1;
  120,  188,  128,   48,  10,   1;
  328,  608,  504,  240,  70,  12,   1;
  896, 1920, 1872, 1080, 400,  96,  14,  1;
		

Crossrefs

Cf. A002605, A007482 (row sums), A053121, A073403, A073404.
Columns: A002605 (k=0), A073388 (k=1), A073389 (k=2), A073390 (k=3), A073391 (k=4), A073392 (k=5), A073393 (k=6), A073394 (k=7), A073397 (k=8), A073398 (k=9).

Programs

  • Magma
    A073387:= func< n,k | (&+[2^(n-k-j)*Binomial(n-j,k)*Binomial(n-k-j,j): j in [0..Floor((n-k)/2)]]) >;
    [A073387(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 03 2022
    
  • Maple
    T := (n,k) -> `if`(n=0,1,2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2)): seq(seq(simplify(T(n,k)),k=0..n),n=0..10); # Peter Luschny, Apr 25 2016
  • Mathematica
    T[n_, k_]:=T[n,k]=Sum[2^(n-k-j)*Binomial[n-j,k]*Binomial[n-k-j,j], {j,0,(n-k)/2}];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 04 2019 *)
  • SageMath
    def A073387(n,k): return sum(2^(n-k-j)*binomial(n-j,k)*binomial(n-k-j,j) for j in range(((n-k+2)//2)))
    flatten([[A073387(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 03 2022

Formula

T(n, k) = 2*(p(k-1, n-k)*(n-k+1)*T(n-k+1) + q(k-1, n-k)*(n-k+2)*T(n-k))/(k!*12^k), n >= k >= 1, with T(n) = T(n, k=0) = A002605(n), else 0; p(m, n) = Sum_{j=0..m} A(m, j)*n^(m-j) and q(m, n) = Sum_{j=0..m} B(m, j)*n^(m-j) with the number triangles A(k, m) = A073403(k, m) and B(k, m) = A073404(k, m).
T(n, k) = Sum_{j=0..floor((n-k)/2)} 2^(n-k-j)*binomial(n-j, k)*binomial(n-k-j, j) if n > k, else 0.
T(n, k) = ((n-k+1)*T(n, k-1) + 2*(n+k)*T(n-1, k-1))/(6*k), n >= k >= 1, T(n, 0) = A002605(n+1), else 0.
Sum_{k=0..n} T(n, k) = A007482(n).
G.f. for column m (without leading zeros): 1/(1-2*x*(1+x))^(m+1), m>=0.
T(n,k) = 2^(n-k)*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -2) for n>=1. - Peter Luschny, Apr 25 2016
From G. C. Greubel, Oct 03 2022: (Start)
T(n, n-1) = A005843(n), n >= 1.
T(n, n-2) = 2*A005563(n-1), n >= 2.
T(n, n-3) = 4*A159920(n-1), n >= 2.
Sum_{k=0..n} (-1)^k*T(n, k) = A001045(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1). (End)

A076025 Expansion of g.f.: (1-3*x*C)/(1-4*x*C) where C = (1 - sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 5, 26, 137, 726, 3858, 20532, 109361, 582782, 3106550, 16562668, 88314634, 470942044, 2511443268, 13393472616, 71428622337, 380940866574, 2031641406798, 10835261623356, 57787472903502, 308197667445204, 1643712737618748, 8766437439778776, 46754218658948922
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

From Paul Barry, Sep 23 2009: (Start)
The Hankel transform of this sequence is 3n+1 or 1,4,7,10,... (A016777).
The Hankel transform of the aeration of this sequence is A016777 doubled, that is, 1,1,4,4,7,7,...
In general, the Hankel transform of [x^n](1-r*xc(x))/(1-(r+1)*xc(x)) is rn+1, and that of the corresponding aerated sequence is the doubled sequence of rn+1. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1- 3*Sqrt(1-4*x))/(2-4*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*Sqrt[1-4*x])/(2-4*Sqrt[1-4*x]),{x,0,30}],x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)! * Hypergeometric2F1Regularized[1, n+1/2, n+2, 3/4] / (16*n!) + 2^(4*n-1)/3^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} 3^k*binomial(2n+1, n-k)*2*(k+1)/(n+k+2). - Paul Barry, Jun 22 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*3^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015518(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n+1)=(-1)^n*charpoly(A,-4). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
5, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(4*n-1)/3^(n+1). - Vaclav Kotesovec, Dec 09 2013
The sequence is the INVERT transform of A049027: (1, 4, 17, 74, 326, ...) and the third INVERT transform of the Catalan sequence (1, 2, 5, ...). - Gary W. Adamson, Jun 23 2015
O.g.f.: A(x) = (1 - 1/2*Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
Previous Showing 31-40 of 102 results. Next