cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 102 results. Next

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).

Original entry on oeis.org

1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 05 2014

Keywords

Comments

Row sums are powers of 2.

Examples

			Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017

Formula

G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A093134 A Jacobsthal trisection.

Original entry on oeis.org

1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Comments

Counts closed walks at a vertex of the complete graph on 9 nodes K_9.
Second binomial transform is A047855.

Crossrefs

Other sequences with a(n+1) = 8^n - a(n) are A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Cf. A047855.

Programs

  • Magma
    [(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    k=0;lst={1, k};Do[k=8^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[(8^n + 8*(-1)^n)/9, {n,0,30}] (* or *) LinearRecurrence[{7,8}, {1,0}, 30] (* G. C. Greubel, Jan 06 2018 *)
  • PARI
    for(n=0,30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018

Formula

G.f.: (1-7*x)/(1 - 7*x - 8*x^2).
a(n) = (8^n + 8*(-1)^n)/9.
a(n) = 8*A001045(3*n-3)/3.
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(-x)*(exp(9*x) + 8)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)

A154692 Triangle read by rows: T(n, k) = (2^(n-k)*3^k + 2^k*3^(n-k))*binomial(n, k).

Original entry on oeis.org

2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Examples

			Triangle begins
     2;
     5,     5;
    13,    24,    13;
    35,    90,    90,     35;
    97,   312,   432,    312,     97;
   275,  1050,  1800,   1800,   1050,    275;
   793,  3492,  7020,   8640,   7020,   3492,   793;
  2315, 11550, 26460,  37800,  37800,  26460, 11550,  2315;
  6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817;
		

Crossrefs

Sums include: A010673 (alternating sign row), A020699 (row), A020729 (row).
Related sequences: A007318, A154690,

Programs

  • Magma
    A154692:= func< n,k | (2^(n-k)*3^k + 2^k*3^(n-k))*Binomial(n,k) >;
    [A154692(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154692 := proc(n,m)
            (2^(n-m)*3^m+2^m*3^(n-m))*binomial(n,m) ;
    end proc:
    seq(seq(A154692(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 24 2011
  • Mathematica
    p=2; q=3;
    T[n_, m_]= (p^(n-m)*q^m + p^m*q^(n-m))*Binomial[n,m];
    Table[T[n,m], {n,0,10}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154692(n,k): return (pow(2,n-k)*pow(3,k)+pow(2,k)*pow(3,n-k))*binomial(n,k)
    print(flatten([[A154692(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

Sum_{k=0..n} T(n, k) = A020729(n) = A020699(n+1).
T(n,m) = A013620(n,m) + A013620(m,n). - R. J. Mathar, Oct 24 2011
From G. C. Greubel, Jan 18 2025: (Start)
T(2*n, n) = A119309(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A015518(n+1) + A007482(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A088137(n+1) + A000225(n+1). (End)

A203362 T(n,k)=Number of nXk binary arrays with every 1 immediately preceded by 0 to the left or above.

Original entry on oeis.org

1, 2, 2, 3, 7, 3, 5, 20, 20, 5, 8, 61, 102, 61, 8, 13, 182, 565, 565, 182, 13, 21, 547, 3042, 5677, 3042, 547, 21, 34, 1640, 16538, 55517, 55517, 16538, 1640, 34, 55, 4921, 89610, 547897, 984703, 547897, 89610, 4921, 55, 89, 14762, 486103, 5390325, 17631496
Offset: 1

Views

Author

R. H. Hardin Dec 31 2011

Keywords

Comments

Table starts
..1....2......3........5..........8...........13.............21
..2....7.....20.......61........182..........547...........1640
..3...20....102......565.......3042........16538..........89610
..5...61....565.....5677......55517.......547897........5390325
..8..182...3042....55517.....984703.....17631496......314688054
.13..547..16538...547897...17631496....572818585....18550312526
.21.1640..89610..5390325..314688054..18550312526..1089970014327
.34.4921.486103.53087833.5622720187.601393482628.64114204398028

Examples

			Some solutions for n=5 k=3
..0..1..0....0..0..1....0..1..0....0..1..0....0..0..1....0..0..0....0..0..1
..0..0..0....0..0..0....1..0..0....0..0..1....0..0..1....1..0..0....1..0..0
..0..0..0....0..0..0....0..0..1....0..0..0....0..1..0....0..1..1....0..0..0
..0..0..0....0..1..1....1..0..0....1..1..1....0..0..1....0..0..1....0..1..1
..1..1..0....0..1..0....0..0..1....0..0..0....0..1..0....1..0..1....0..0..1
		

Crossrefs

Column 1 is A000045(n+1)
Column 2 is A015518(n+1)

A152011 a(0) = 1 and a(n) = (3^n - (-1)^n)/2 for n >= 1.

Original entry on oeis.org

1, 2, 4, 14, 40, 122, 364, 1094, 3280, 9842, 29524, 88574, 265720, 797162, 2391484, 7174454, 21523360, 64570082, 193710244, 581130734, 1743392200, 5230176602, 15690529804, 47071589414, 141214768240, 423644304722
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Nov 19 2008

Keywords

Comments

Previous name was: A product form based on the Fibonacci product form: f(n) = 2^n*Product_{k=1..floor((n-1)/2)} (1 + 3*cos(k*Pi/n)^2).
Gary W. Adamson found this article, I experimented. Based on the paper Fibonacci identity of: f(n) = Product_{k=1..floor((n-1)/2)} (1 + 4*cos(k*Pi/n)^2). I changed the 4 to a 3 and used 2^n to get rid of the rational terms. The product comes down slow in Mathematica: I tried 30 but no luck.
For n > 0, Select an odd size subset S of {1, 2, ..., n}, then select a subset of S. - Geoffrey Critzer, Mar 03 2010
It appears that if s(n) is a first order rational sequence of the form s(1) = 2, s(n) = (s(n-1) + 2)/(2*s(n-1) + 1), n > 1 then s(n) = a(n)/(a(n) + (-1)^n). - Gary Detlefs, Nov 16 2010
For n >= 1, a(n) counts closed walks of length n + 1 on the vertex of a triangle to which two loops have been added to one of remaining vertices. - David Neil McGrath, Sep 04 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 14*x^3 + 40*x^4 + 122*x^5 + 364*x^6 + 1094*x^7 + ...
		

Crossrefs

Cf. A000045.
A152011 = 2*A015518, except for the first term. [From Geoffrey Critzer, Mar 03 2010; corrected by M. F. Hasler, Nov 16 2010]

Programs

  • Magma
    [1] cat [(3^n-(-1)^n)/2: n in [1..30]]; // Vincenzo Librandi, Sep 15 2014
  • Mathematica
    f[n_] = 2^n Product[(1 + 3 Cos[k Pi/n]^2), {k, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
    (* Second program: *)
    CoefficientList[Series[(1-3x^2)/((1+x)(1-3x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 15 2014 *)
    Join[{1}, LinearRecurrence[{2, 3}, {2, 4}, 30]] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    a(n)=floor(2^n*prod(k=1,floor((n-1)/2),1+3*cos(k*Pi/n)^2)+1/2) \\ Edward Jiang, Sep 08 2014
    
  • PARI
    a(n)=if(n,(3^n-(-1)^n)/2,1) \\ Charles R Greathouse IV, Sep 15 2014
    
  • Sage
    def A152011(n) :
        if n == 0 : return 1
        return add(2^(n-k)*binomial(n,k) for k in range(n)[::2])  # Peter Luschny, Jul 30 2012
    

Formula

a(n) = 2^n * Product_{k = 1..floor((n-1)/2)} (1 + 3 * cos(k * Pi/n)^2).
From Geoffrey Critzer, Mar 03 2010: (Start)
For n > 0, a(n) = Sum_{k = 1, 3, 5, ...} C(n, k)* 2^k.
E.g.f.: 1 + sinh(2*x)*exp(x). (End)
From R. J. Mathar, Mar 11 2010: (Start)
a(n) = (3^n - (-1)^n)/2, n > 0.
G.f.: (1 - 3*x^2)/((1 + x)*(1 - 3*x)). (End)
a(n) = 2*a(n-1) + 3*a(n-2) for n >= 2, a(1) = 2, and a(2) = 4. - David Neil McGrath, Sep 04 2014
a(n) = M^n[1,2] = M^n[2,1] for n>0, where M = [1,2;2,1]. - Rigoberto Florez, May 05 2020

Extensions

Terms a(16)-a(25) from Peter Luschny, Jul 30 2012
New name (using R. J. Mathar's formula) by Joerg Arndt, Sep 09 2014

A054880 a(n) = 3*(9^n - 1)/4.

Original entry on oeis.org

0, 6, 60, 546, 4920, 44286, 398580, 3587226, 32285040, 290565366, 2615088300, 23535794706, 211822152360, 1906399371246, 17157594341220, 154418349070986, 1389765141638880, 12507886274749926, 112570976472749340, 1013138788254744066, 9118249094292696600, 82064241848634269406, 738578176637708424660
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

Number of walks of length 2n+1 along the edges of a (3 dimensional) cube between two opposite vertices.
Urn A initially contains 3 labeled balls while urn B is empty. A ball is randomly selected and switched from one urn to the other. a(n)/3^(2n+1) is the probability that urn A is empty after 2n+1 switches. - Geoffrey Critzer, May 23 2013

Crossrefs

Programs

  • GAP
    List([0..30], n-> 3*(9^n -1)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [3*(9^n -1)/4: n in [0..30]]; // G. C. Greubel, Jul 14 2019
    
  • Mathematica
    Table[(2 n + 1)! Coefficient[Series[Sinh[x]^3, {x, 0, 2 n + 1}],
    x^(2 n + 1)], {n, 0, 30}]  (* Geoffrey Critzer, May 23 2013 *)
    LinearRecurrence[{10,-9},{0,6},30] (* Harvey P. Dale, Sep 17 2024 *)
  • PARI
    vector(30, n, n--; 3*(9^n -1)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [3*(9^n -1)/4 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

G.f.: (3/4)/(1 - 9*x) - (3/4)/(1 - x).
a(n) = 6*A002452(n).
sin(x)^3 = Sum_{k>=0} (-1)^(k+1)*a(k)*x^(2k+1)/(2k+1)!. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A015518(2n+1) - 1 = (A046717(2n+1) - 1)/2. - M. F. Hasler, Mar 20 2008
a(n) = 9*a(n-1) + 6 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 07 2010
a(n) = A066443(n) - 1. - Georg Fischer, Nov 25 2018
E.g.f.: 3*(exp(9*x) - exp(x))/4. - G. C. Greubel, Jul 14 2019
a(n) = 10*a(n-1) - 9*a(n-2) with a(0) = 0 and a(1) = 6. - Miquel A. Fiol, Mar 09 2024

A137241 Number triples (k,3-k,2-2k), concatenated for k=0, 1, 2, 3,...

Original entry on oeis.org

0, 3, 2, 1, 2, 0, 2, 1, -2, 3, 0, -4, 4, -1, -6, 5, -2, -8, 6, -3, -10, 7, -4, -12, 8, -5, -14, 9, -6, -16, 10, -7, -18, 11, -8, -20, 12, -9, -22, 13, -10, -24, 14, -11, -26, 15, -12, -28, 16, -13, -30, 17, -14, -32, 18, -15, -34, 19, -16, -36, 20, -17, -38, 21, -18, -40
Offset: 0

Views

Author

Paul Curtz, Mar 09 2008

Keywords

Comments

The entries are the coefficients in a family of Jacobsthal recurrences: a(n)=k*a(n-1)+(3-k)*a(n-2)+(2-2k)*a(n-3).
Examples for k=0 are in A001045 and A113954. Examples for k=1 are A001045, A078008.
Examples for k=2 are A000975, A087288, A084639, A000012 and A001045.
Examples for k=3 are A045883, A059570. Examples for k=4 are A094705 and A015518.

Examples

			The triples (k,3-k,2-2k) are (0,3,2), (1,2,0), (2,1,-2), (3,0,-4),...
		

Programs

  • Mathematica
    CoefficientList[Series[x*(3 + 2*x + x^2 - 4*x^3 - 4*x^4)/((x - 1)^2*(1 + x + x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2017 *)
    Table[{n,3-n,2-2n},{n,0,30}]//Flatten (* or *) LinearRecurrence[ {0,0,2,0,0,-1},{0,3,2,1,2,0},100] (* Harvey P. Dale, Jun 23 2019 *)
  • PARI
    x='x+O('x^50); Vec(x*(3+2*x+x^2-4*x^3-4*x^4)/((x-1)^2*(1+x +x^2 )^2)) \\ G. C. Greubel, Sep 28 2017

Formula

From R. J. Mathar, Feb 25 2009: (Start)
a(n) = 2*a(n-3) - a(n-6).
G.f.: x*(3+2*x+x^2-4*x^3-4*x^4)/((x-1)^2*(1+x+x^2)^2). (End)

Extensions

Edited by R. J. Mathar, Jun 28 2008

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A051068 Partial sums of A014578.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10, 11, 11, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 48, 49, 49
Offset: 0

Views

Author

Keywords

Comments

Duplicate of A050294? [Joerg Arndt, Apr 27 2013]
From Michel Dekking, Feb 10 2019: (Start)
The answer to Joerg Arndt's question is: yes (modulo an offset). To see this, it suffices to prove that the two sequences of first differences Da and Db of a= A051068 and b:=A050294 are equal. Clearly the sequence Da of first differences of a is the sequence A014578. According to Philippe Deleham (2004), Da equals 0x = 0110110111110..., where x is the fixed point of the morphism 0->111, 1->110.
From Vladimir Shevelev (2011) we know a formula for b=A050294: b(n) = n-b(floor(n/3)). This gives that the sequence of first differences Db:=(b(n+1)-b(n)) of b satisfies
Db(3m+1) = Db(3m+2) = 1, and Db(3m+3) = 1 - Db(m).
This implies that Db = x, the fixed point of 0->111, 1->110.
(End)

Crossrefs

Formula

a(3^n) = A015518(n+1) = -(-1)^n*A014983(n+1). - Philippe Deléham, Mar 31 2004
Previous Showing 61-70 of 102 results. Next