cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A319232 Decimal expansion of Sum_{p = prime} 1/(p*log p)^2.

Original entry on oeis.org

6, 3, 7, 0, 5, 6, 1, 8, 4, 0, 7, 4, 6, 7, 6, 4, 3, 3, 0, 5, 9, 9, 6, 8, 5, 8, 5, 0, 4, 7, 8, 5, 2, 7, 6, 9, 4, 5, 7, 9, 8, 9, 6, 0, 7, 7, 1, 9, 9, 5, 3, 3, 6, 7, 0, 9, 6, 0, 1, 3, 7, 1, 0, 7, 5, 5, 8, 8, 3, 1, 6, 0, 4, 3, 3, 2, 7, 1, 5, 1, 6, 8, 3, 6, 7, 5, 3, 8, 3, 5, 9, 6, 6, 1, 3, 3, 1, 8, 1, 3, 1, 3, 8, 2, 7, 5
Offset: 0

Views

Author

R. J. Mathar, Sep 14 2018

Keywords

Comments

Obtained by expanding the formalism of arXiv:0811.4739 to double integrals over the Riemann zeta function.

Examples

			1/A016627^2 + 1/A016650^2 + 1/8.047189^2 + ... = 0.637056184074676....
		

Crossrefs

Programs

  • Mathematica
    digits = 106; precision = digits + 10;
    tmax = 500; (* integrand considered negligible beyond tmax *)
    kmax = 300; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t - 2k) Log[Zeta[t]], {t, 2k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^3)*InLogZeta[k]]];
    s = 0;
    Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 300, s = s + moebius(k)/k^3 * intnum(x=2*k,[[1], 1], (x-2*k)*log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022

Extensions

More terms from Vaclav Kotesovec, Jun 12 2022

A016687 Decimal expansion of log(64) = 6*log(2).

Original entry on oeis.org

4, 1, 5, 8, 8, 8, 3, 0, 8, 3, 3, 5, 9, 6, 7, 1, 8, 5, 6, 5, 0, 3, 3, 9, 2, 7, 2, 8, 7, 4, 9, 0, 5, 9, 4, 0, 8, 4, 5, 3, 0, 0, 0, 8, 0, 6, 1, 6, 1, 5, 3, 1, 5, 2, 4, 7, 2, 4, 0, 8, 0, 0, 5, 6, 9, 6, 0, 3, 6, 1, 7, 3, 1, 8, 1, 8, 1, 6, 8, 2, 9, 3, 6, 3, 5, 1, 7, 9, 9, 6, 1, 9, 7, 8, 5, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Examples

			4.158883083359671856503392728749059408453000806161531524724080056960361...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A002162, A005900, A016492 (continued fraction), A016627, A016631.

Programs

  • Mathematica
    RealDigits[Log[64],10,120][[1]] (* Harvey P. Dale, May 06 2022 *)
  • PARI
    default(realprecision, 20080); x=log(64); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016687.txt", n, " ", d)); \\ Harry J. Smith, May 22 2009

Formula

Equals 2*A016631 = 3*A016627 = 6*A002162. - Alois P. Heinz, Aug 07 2023
From Peter Bala, Mar 05 2024: (Start)
log(64) = 4 + Sum_{n >= 1} (-1)^(n+1)/(p(n)*p(n+1)), where p(n) = n*(2*n^2 + 1)/3 = A005900.
Continued fraction: log(64) = 4 + 1/(6 + (1*2)/(6 + (2*3)/(6 + (3*4)/(6 + (4*5)/(6 + ... ))))). See A142983. Cf. A016627. (End)

A097448 If n is square, replace it with sqrt(n).

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 8, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

Cino Hilliard, Aug 23 2004

Keywords

Examples

			Among the first five integers 0, 1, 2, 3, and 4 the squares are 0, 1, and 4. Thus the first five terms in the sequence are 0, 1, 2, 3, and 2.
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ[Sqrt[n]],Sqrt[n],n],{n,0,100}] (* Harvey P. Dale, Jul 09 2017 *)
  • PARI
    g(n) = for(x=0,n,if(issquare(x),y=sqrt(x),y=x);print1(floor(y)","))
    
  • PARI
    for(n=0,74,print1(if(issquare(n,&m),m,n)", ")) \\ Zak Seidov, Feb 21 2013

Formula

Sum_{n>=1} (-1)^(n+1)/n = 2*log(2) - Pi^2/12 = A016627 - A072691. - Amiram Eldar, Jul 07 2024

A191907 Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.

Original entry on oeis.org

0, 1, 0, 1, -1, 0, 1, 1, 1, 0, 1, 1, -2, -1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, -2, 1, 0, 1, 1, 1, 1, -4, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, -5, 1, -3, -2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -4, 1, -2, 1, 0, 1, 1, 1, 1, 1, 1, 1, -7, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Mats Granvik, Jun 19 2011

Keywords

Comments

Apart from the top row, the same as A177121.
Sum_{k>=1} T(n,k)/k = log(n); this has been pointed out by Jaume Oliver Lafont in A061347 and A002162.

Examples

			Table starts:
0..0..0..0..0..0..0..0..0...
1.-1..1.-1..1.-1..1.-1..1...
1..1.-2..1..1.-2..1..1.-2...
1..1..1.-3..1..1..1.-3..1...
1..1..1..1.-4..1..1..1..1...
1..1..1..1..1.-5..1..1..1...
1..1..1..1..1..1.-6..1..1...
1..1..1..1..1..1..1.-7..1...
1..1..1..1..1..1..1..1.-8...
		

Crossrefs

Programs

  • Mathematica
    Clear[t, n, k];
    nn = 30;
    t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1]
    MatrixForm[Transpose[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]]
  • PARI
    N=20; M=matrix(N,N,n,k, if(n%k==0,1-k,1))~

Formula

If n divides k then T(n,k) = -(n-1) else 1.

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

Original entry on oeis.org

1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
		

Crossrefs

Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
    RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Sum_{n>=1} 2/(3*n^2 - n).
Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - Michel Marcus, Jul 03 2014
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025

A274540 Decimal expansion of exp(sqrt(2)).

Original entry on oeis.org

4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)).
From Peter Bala, Oct 23 2019: (Start)
The constant is irrational: Henry Cohn gives the following proof in Todd and Vishals Blog - "By the way, here's my favorite application of the tanh continued fraction: exp(sqrt(2)) is irrational.
Consider sqrt(2)*(exp(sqrt(2))-1)/(exp(sqrt(2))+1). If exp(sqrt(2)) were rational, or even in Q(sqrt(2)), then this expression would be in Q(sqrt(2)). However, it is sqrt(2)*tanh(1/sqrt(2)), and the tanh continued fraction shows that this equals [0,1,6,5,14,9,22,13,...]. If it were in Q(sqrt(2)), it would have a periodic simple continued fraction expansion, but it doesn't." (End)

Examples

			c = 4.113250378782927517173581815140304502401663943151...
		

Crossrefs

Programs

  • Maple
    Digits := 80: evalf(exp(sqrt(2))); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

Formula

c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More terms from Jon E. Schoenfield, Mar 15 2018

A379324 Decimal expansion of log(6)^(log(5)^(log(4)^(log(3)^log(2)))).

Original entry on oeis.org

3, 1, 4, 1, 5, 7, 7, 3, 8, 7, 1, 6, 9, 1, 9, 0, 5, 3, 3, 6, 5, 7, 4, 4, 4, 9, 8, 1, 3, 4, 8, 6, 7, 6, 8, 1, 0, 5, 4, 5, 3, 1, 0, 5, 6, 1, 9, 3, 9, 4, 8, 9, 2, 5, 4, 5, 0, 3, 8, 2, 5, 2, 8, 5, 7, 9, 7, 3, 9, 5, 6, 7, 8, 9, 3, 7, 6, 1, 8, 9, 1, 6, 4, 2, 1, 9, 5, 2, 9, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 20 2024

Keywords

Comments

This is an approximation to Pi accurate to 5 digits.

Examples

			3.1415773871691905336574449813486768105453105619...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Log[6]^Log[5]^Log[4]^Log[3]^Log[2], 10, 100]]

Formula

A275792 Decimal expansion of the sum of the reciprocals of the tetradecagonal numbers A051866.

Original entry on oeis.org

1, 1, 5, 0, 9, 8, 2, 3, 6, 8, 0, 9, 4, 6, 7, 6, 3, 8, 6, 3, 6, 3, 6, 8, 9, 8, 9, 6, 9, 5, 2, 6, 7, 5, 0, 5, 8, 3, 0, 9, 6, 6, 7, 0, 9, 5, 5, 1, 8, 7, 4, 9, 1, 0, 9, 8, 3, 9, 6, 4, 5, 7, 8, 4, 5, 0, 5, 0, 4, 2, 6, 9, 1, 0, 9, 1, 3, 6, 6, 7, 4, 1, 4, 0, 9, 6, 6, 7, 5, 5, 3, 7, 0, 6, 3, 0, 5, 1, 5
Offset: 1

Views

Author

Wolfdieter Lang, Sep 12 2016

Keywords

Comments

See Table 1 of the Downey et al. link.
From Wolfdieter Lang, Nov 09 2017: (Start)
The general formula for S_{2*(k+1)} = Sum_{n>=0} 1/((n+1)*(k*n+1)) given in the Downey et al. link is a special case of the simpler formula for V(m,r) = Sum_{n>=0} 1/((n+1)*(m*n + r)), r = 1,2, ... ,m -1. V(m,r) = (m/(m-r))*v_m(r) in Koecher's notation. For this formula for m*v_m(r) see a comment in A294512.
The special case is m = k and r = 1, leading to S_{2*(k+1)} = V(k,1) = (log(k) + (Pi/2)*cot(Pi/k) - Sum_{j=1..k-1} cos(2*Pi*j/k)*log(2*sin(Pi*j/k)))/(k-1), for k >= 2.
S_14, for k=6, is then given by the formula below (also obtained from the more complicated formula of Downey et al.).
The partial sums are given in A294834/A294835.
(End)

Examples

			1.150982368094676386363689896952675058309...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193. See (6/5)*v_6(1) on p. 192.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); (4*Log(2) + 3*Log(3) + Pi(R)*Sqrt(3))/10; // G. C. Greubel, Mar 25 2024
    
  • Mathematica
    RealDigits[2*Log[2]/5 + 3*Log[3]/10 + Sqrt[3]*Pi/10, 10, 120][[1]] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10 \\ Michel Marcus, Nov 09 2017
    
  • SageMath
    numerical_approx((4*log(2) + 3*log(3) + pi*sqrt(3))/10, digits=139) # G. C. Greubel, Mar 25 2024

Formula

Sum_{n >= 1} 1/(n*(6*n - 5)) = 2*log(2)/5 + 3*log(3)/10 + sqrt(3)*Pi/10.

A016732 Continued fraction for log(4).

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 7, 6, 4, 1, 1, 21, 3, 1, 3, 3, 1, 1, 2, 1, 1, 2, 6, 1, 1, 3, 9, 3, 3, 1, 2, 1, 1, 1, 3, 1, 10, 7, 2, 5, 2, 2, 4, 9, 7, 1, 1, 1, 13, 1, 14, 1, 1, 1, 1, 2, 6, 1, 1, 1, 2, 2, 9, 1, 1, 3, 3, 1, 34, 1, 1, 5, 16, 3, 3, 1, 1, 9, 2, 1, 3, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			1.386294361119890618834464242... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(2 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A016627 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(2*Log(2)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[2*Log[2], 100] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(4)); for (n=1, 20000, write("b016732.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A097449 If n is a cube, replace it with the cube root of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 3, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

Cino Hilliard, Aug 23 2004

Keywords

Examples

			The 9th integer is 8 so a(9) = 8^(1/3) = 2.
		

Crossrefs

Programs

  • Mathematica
    rcr[n_]:=Module[{crn=Power[n, (3)^-1]},If[IntegerQ[crn],crn,n]]; Array[ rcr,80,0] (* Harvey P. Dale, Jan 28 2012 *)
  • PARI
    iscube(n) = { local(r); r = n^(1/3); if(floor(r+.5)^3== n,1,0) }
    replcube(n) = { for(x=0,n, if(iscube(x),y=x^(1/3),y=x); print1(floor(y)",")) }
    
  • PARI
    a(n)=ispower(n,3,&n);n \\ Charles R Greathouse IV, Oct 27 2011

Formula

Sum_{n>=1} (-1)^(n+1)/n = 2*log(2) - 3*zeta(3)/4 = A016627 - A197070. - Amiram Eldar, Jul 07 2024

Extensions

Corrected by T. D. Noe, Oct 25 2006
Previous Showing 11-20 of 44 results. Next