cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 99 results. Next

A016950 a(n) = (6*n + 3)^6.

Original entry on oeis.org

729, 531441, 11390625, 85766121, 387420489, 1291467969, 3518743761, 8303765625, 17596287801, 34296447249, 62523502209, 107918163081, 177978515625, 282429536481, 433626201009, 646990183449, 941480149401, 1340095640625, 1870414552161, 2565164201769, 3462825991689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^6 = A016946(n)^3 = A016947(n)^2.
a(n) = 3^6*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/699840. (End)

A030140 The nonsquares squared.

Original entry on oeis.org

4, 9, 25, 36, 49, 64, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400, 441, 484, 529, 576, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025
Offset: 1

Views

Author

Keywords

Comments

The complement of the fourth powers A000583 within the squares A000290. - Peter Munn, Aug 20 2019

Examples

			a(1)=2^2, a(2)=3^2, a(3)=5^2, a(4)=6^2, a(5)=7^2, ..., a(n)=(integer which is not a perfect square)^2.
		

Crossrefs

Positions of 2's in A352080.
Related to A016945 via A225546.

Programs

  • Magma
    [(n + Floor(1/2 + Sqrt(n)))^2: n in [1..60]]; // Vincenzo Librandi, Apr 06 2020
    
  • Maple
    a:=proc(n) if type(sqrt(n),integer)=false then n^2 else fi end: seq(a(n),n=1..70); # Emeric Deutsch, Apr 11 2007
  • Mathematica
    a[n_] := (n + Floor[1/2 + Sqrt[n]])^2;
    Array[a, 50] (* Jean-François Alcover, Apr 05 2020 *)
  • Python
    from math import isqrt
    def A030140(n): return (n+(k:=isqrt(n))+int(n>=k*(k+1)+1))**2 # Chai Wah Wu, Jun 17 2024

Formula

a(n) = A000037(n)^2.
Sum_{n>=1} 1/a(n) = zeta(2) - zeta(4) = A013661 - A013662 = 0.5626108331... - Amiram Eldar, Nov 14 2020
{a(n) : n >= 1} = {A225546(6m+3) : m >= 0}. - Peter Munn, Nov 17 2022

Extensions

Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A109162 a(1) = 1; for n > 1, a(n) = A019565(a(n-1)).

Original entry on oeis.org

1, 2, 3, 6, 15, 210, 10659, 54230826, 249853434654335387610276087
Offset: 1

Views

Author

Leroy Quet, Aug 18 2005

Keywords

Comments

After the initial 1, even-indexed terms are of the form 4k+2 (members of A016825) and odd-indexed terms are of the form 6k+3 (members of A016945). However, not all even terms after 2 are multiples of three, because not all odd-indexed terms are of the form 4k+3. For example, because a(11) is of the form 4k+1, a(12) cannot be a multiple of three. - Antti Karttunen, Jun 18 2017

Examples

			a(4) = 6, which is 110 in binary. So a(5) is the product of the primes corresponding to the 1's of 110, 3*5 = 15.
		

Crossrefs

Cf. A019565, A285320 (a left inverse).
The left edge of A285332 and A285333.
Cf. A153013, A328316 for similar iteration sequences, and also A376406, A376407, A376408.

Programs

  • Mathematica
    NestList[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[#, 2] &, 1, 11] (* Michael De Vlieger, Aug 20 2017 *)

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006

A165351 Numerator of 3*n/2.

Original entry on oeis.org

0, 3, 3, 9, 6, 15, 9, 21, 12, 27, 15, 33, 18, 39, 21, 45, 24, 51, 27, 57, 30, 63, 33, 69, 36, 75, 39, 81, 42, 87, 45, 93, 48, 99, 51, 105, 54, 111, 57, 117, 60, 123, 63, 129, 66, 135, 69, 141, 72, 147, 75, 153, 78, 159, 81, 165, 84, 171, 87, 177, 90, 183, 93, 189, 96, 195
Offset: 0

Views

Author

Paul Curtz, Sep 16 2009

Keywords

Comments

First trisection of A026741. The other trisections are A165355 and A165367.

Crossrefs

Cf. A000034 (denominator).

Programs

Formula

a(n) = A026741(3*n) = 3*A026741(n).
a(2n) = A008585(n).
a(2n+1) = A016945(n).
G.f.: 3*x*(1+x+x^2)/((1-x)^2 * (1+x)^2).
a(n) = numerator(3n/2). - Wesley Ivan Hurt, Oct 11 2013
a(n) = 3*n / (1 + ((n+1) mod 2)). - Wesley Ivan Hurt, Feb 25 2014
From G. C. Greubel, Jul 31 2022: (Start)
a(n) = 3*n*(3 - (-1)^n)/4.
E.g.f.: (3*x/2)*( 2*cosh(x) + sinh(x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Sep 26 2009
New name from Wesley Ivan Hurt, Oct 13 2013

A249734 Even bisection of A003961: Replace in 2n each prime factor p(k) with prime p(k+1).

Original entry on oeis.org

3, 9, 15, 27, 21, 45, 33, 81, 75, 63, 39, 135, 51, 99, 105, 243, 57, 225, 69, 189, 165, 117, 87, 405, 147, 153, 375, 297, 93, 315, 111, 729, 195, 171, 231, 675, 123, 207, 255, 567, 129, 495, 141, 351, 525, 261, 159, 1215, 363, 441, 285, 459, 177, 1125, 273, 891, 345, 279, 183, 945, 201, 333, 825, 2187, 357, 585, 213, 513, 435, 693, 219, 2025, 237, 369
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2014

Keywords

Crossrefs

Row 2 of A246278.
Cf. A249735 (the other bisection of A003961).
Cf. also A000079, A000244.

Formula

a(n) = A003961(2*n).
a(n) = 3 * A003961(n).
a(n) = A064989(A249827(n)).
a(n) = A003961(A243501(A064216(n))).
a(n) = A003961(A243502(A048673(n))).
a(n) = A016945(A048673(n)-1). [Permutation of A016945, 6n+3.]
Other identities. For all n >= 1:
a(A000079(n-1)) = A000244(n). [Maps each 2^n to 3^(n+1).]

A016951 a(n) = (6*n + 3)^7.

Original entry on oeis.org

2187, 4782969, 170859375, 1801088541, 10460353203, 42618442977, 137231006679, 373669453125, 897410677851, 1954897493193, 3938980639167, 7446353252589, 13348388671875, 22876792454961, 37725479487783, 60170087060757, 93206534790699, 140710042265625, 207616015289871
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^7: n in [0..40]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^7; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^7.
a(n) = 3^7*A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/279936.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/403107840. (End)

A047263 Numbers that are congruent to {0, 1, 2, 4, 5} mod 6.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Complement of A016945. - R. J. Mathar, Feb 25 2008
Nonnegative integers m such that floor(2*m^2/12) = 2*floor(m^2/12). See the Crossrefs field of A265187 for similar sequences. - Bruno Berselli, Dec 08 2015
Also, numbers k such that Fibonacci(k) mod 4 = 0, 1 or 3. - Bruno Berselli, Oct 17 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 6 in [0, 1, 2, 4, 5]]; // Wesley Ivan Hurt, Aug 16 2016
    
  • Maple
    for n from 0 to 200 do if n mod 6 <> 3 then printf(`%d,`,n) fi: od:
    A047263:=n->6*floor(n/5)+[0, 1, 2, 4, 5][(n mod 5)+1]: seq(A047263(n), n=0..100); # Wesley Ivan Hurt, Aug 16 2016
  • Mathematica
    Select[Range[0,100], Mod[#,6]!=3&] (* Harvey P. Dale, May 17 2011 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,4,5,6},90] (* Harvey P. Dale, Oct 05 2014 *)
  • PARI
    first(n) = {select(x->(x%6!=3), vector(6*n\5, i, i-1))} \\ David A. Corneth, Oct 17 2017

Formula

O.g.f.: x*(x^2+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - R. J. Mathar, Feb 25 2008
a(n) = a(n-5) + 6 for n > 5. - R. J. Mathar, Feb 25 2008
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, Oct 05 2014
From Wesley Ivan Hurt, Aug 16 2016: (Start)
a(n) = n + floor((n-4)/5).
a(n) = (6*n - 4 - ((n+1) mod 5))/5.
a(5k) = 6k-1, a(5k-1) = 6k-2, a(5k-2) = 6k-4, a(5k-3) = 6k-5, a(5k-4) = 6k-6. (End)
Sum_{n>=2} (-1)^n/a(n) = log(2+sqrt(3))/sqrt(3) - log(2)/6. - Amiram Eldar, Dec 17 2021

Extensions

More terms from James Sellers, Feb 19 2001

A064539 Numbers n such that 2^n + n^2 is prime.

Original entry on oeis.org

1, 3, 9, 15, 21, 33, 2007, 2127, 3759, 29355, 34653, 57285, 99069, 1933695
Offset: 1

Views

Author

Jason Earls, Oct 16 2001

Keywords

Comments

Values 2^2007+2007^2, 2^2127+2127^2, 2^3759+3759^2 were proved prime with Primo.
n is always an odd multiple of 3 (except for the first term), i.e., a(n) is a subsequence of A016945. - Lekraj Beedassy, Jan 01 2007
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 165 pp. 30, 160, Ellipses Paris 2004.

Crossrefs

Programs

  • PARI
    for(n=1,5000, if(isprime(2^n+n^2),print(n)))

Extensions

a(10)-a(13) from Hugo Pfoertner, Jun 26 2004
a(14) from Ryan Propper, May 11 2023. n=1933695 corresponds to a probable prime with 582101 digits, and was PRP tested with PFGW.

A106833 3n and 2n, alternating.

Original entry on oeis.org

3, 4, 9, 8, 15, 12, 21, 16, 27, 20, 33, 24, 39, 28, 45, 32, 51, 36, 57, 40, 63, 44, 69, 48, 75, 52, 81, 56, 87, 60, 93, 64, 99, 68, 105, 72, 111, 76, 117, 80, 123, 84, 129, 88, 135, 92, 141, 96, 147, 100, 153, 104, 159, 108, 165, 112, 171, 116, 177, 120, 183
Offset: 1

Views

Author

Zak Seidov, May 19 2005

Keywords

Crossrefs

Cf. A118402 (first differences).

Programs

  • Mathematica
    Table[n(2 + Mod[n, 2]), {n, 50}]
  • PARI
    a(n)=sumdiv(n,d,moebius(d)*sigma(2*n/d)) \\ Benoit Cloitre, Oct 18 2009

Formula

a(n) = n*(2 + (n mod 2)).
a(2*n) = 6*n + 3 = A016945(n). - Paul Curtz, Nov 23 2008
a(2*n+1) = A008586(n+1).
From R. J. Mathar, Apr 08 2009: (Start)
G.f.: x*(3+4*x+3*x^2)/((x-1)^2*(1+x)^2).
a(n) = 2*a(n-2) - a(n-4). (End)
a(n) = Sum_{d|n} mu(d)*sigma(2*n/d). - Benoit Cloitre, Oct 18 2009
a(n) = n*(5-(-1)^n)/2. - Wesley Ivan Hurt, May 14 2014

Extensions

More terms from Michel Marcus, May 17 2014

A177713 Sums of two or more positive consecutive odd numbers.

Original entry on oeis.org

4, 8, 9, 12, 15, 16, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 39, 40, 44, 45, 48, 49, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 72, 75, 76, 77, 80, 81, 84, 85, 87, 88, 91, 92, 93, 95, 96, 99, 100, 104, 105, 108, 111, 112, 115, 116, 117, 119, 120, 121, 123, 124, 125, 128
Offset: 1

Views

Author

Keywords

Comments

Sums of two or more positive consecutive odd numbers are Sum_{k=0..m} (2*j+i+2*k) = (m+1)*(m+2*j+i) with m >= 1 and 2*j+i >=1. Testing a number n against being a member can be done by scanning all divisors d, building m=d-1, if this is >= 1 building n/d-m, and testing this for being an odd number >= 1. - R. J. Mathar, Jan 25 2011
The sums of two positive consecutive odd numbers are A008586 (without 0), the sums of three positive consecutive odd numbers are A016945 (without 3), etc.

Examples

			1+3=4, 3+5=8, 1+3+5=9, 5+7=12, 3+5+7=15, 7+9=16, ...
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 3G, p. 179.

Crossrefs

Programs

  • Maple
    isA177713 := proc(n) local d,l; for d in numtheory[divisors](n) do l := d-1 ; if l >=1 then l := n/d -l; if type(l,'odd') and l>=1 then return true; end if; end if; end do: return false; end proc:
    for n from 2 to 130 do if isA177713(n) then printf("%d,",n) ; end if; end do; # R. J. Mathar, Jan 25 2011
  • Mathematica
    z=200; lst={}; Do[c=a; Do[c+=b; If[c<=2*z, AppendTo[lst,c]], {b,a-2,1,-2}],{a,1,z,2}]; Union@lst
Previous Showing 41-50 of 99 results. Next