cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 165 results. Next

A344372 a(n) = Sum_{k = 1..n} gcd(2*k, n).

Original entry on oeis.org

1, 4, 5, 12, 9, 20, 13, 32, 21, 36, 21, 60, 25, 52, 45, 80, 33, 84, 37, 108, 65, 84, 45, 160, 65, 100, 81, 156, 57, 180, 61, 192, 105, 132, 117, 252, 73, 148, 125, 288, 81, 260, 85, 252, 189, 180, 93, 400, 133, 260, 165, 300, 105, 324, 189, 416, 185, 228, 117, 540, 121, 244, 273
Offset: 1

Views

Author

Max Alekseyev, May 16 2021

Keywords

Comments

For all n, a(n) >= 2*n - 1, where the equality holds if n is 1 or an odd prime.
a(n) equals the number of solutions to the congruence 2*x*y == 0 (mod n) for 1 <= x, y <= n. - Peter Bala, Jan 11 2024

Examples

			a(6) = 20: the 20 solutions to the congruence 2*x*y == 0 (mod 6) for 1 <= x, y <= 6 are the pairs (x, y) = (k, 6) for 1 <= k <= 6, the pairs (6, k) for 1 <= k <= 5, the pairs (3, k) for 1 <= k <= 5 and the pairs (1, 3), (2, 3), (4, 3) and (5, 3). - _Peter Bala_, Jan 11 2024
		

Crossrefs

Negated bisection of A199084.

Programs

  • Maple
    seq(add((-1)^k*gcd(k, 2*n), k = 1..2*n), n = 1..70);
    # alternative faster program for large n
    with(numtheory): seq(add(gcd(2,d)*phi(d)*n/d, d in divisors(n)), n = 1..70); # Peter Bala, Jan 08 2024
  • Mathematica
    f[p_, e_] := (e + 1)*p^e - e*p^(e - 1); f[2, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
    Table[Sum[GCD[2*k, n], {k, 1, n}], {n, 1, 60}] (* or *)
    Table[Sum[(-1)^k * GCD[k, 2*n], {k, 1, 2*n}], {n, 1, 60}] (* Vaclav Kotesovec, Jan 13 2024 *)
  • PARI
    { A344372(n) = my(f=factor(n)); prod(i=1,#f~, (f[i,2]+1)*f[i,1]^f[i,2] - if(f[i,1]>2,f[i,2]*f[i, 1]^(f[i,2]-1)) ); }
    
  • PARI
    a(n) = sum(k=1, 2*n, (-1)^k*gcd(k,2*n)); \\ Michel Marcus, May 17 2021

Formula

a(n) = Sum_{k = 1..2*n} (-1)^k * gcd(k,2*n).
a(n) is multiplicative with a(2^d) = (d+1)*2^d, and a(p^d) = (d+1)*p^d - d*p^(d-1) for an odd prime p, d >= 1.
a(n) = A344371(2*n) = -A199084(2*n) = 2*n - A106475(n-1).
a(n) = A018804(n) if n is odd, 4*A018804(n/2) if n is even. - Sebastian Karlsson, Aug 31 2021
From Peter Bala, Jan 11 2023: (Start)
a(n) = Sum_{d divides n} phi(2*d)*n/d, where phi(n) = A000010(n).
a(n) = - A332794(2*n); a(2*n+1) = A368736(2*n+1).
Dirichlet g.f.: 1/(1 - 1/2^s) * zeta(s-1)^2/zeta(s).
Define D(n) = Sum_{d divides n} a(d). Then
D(2*n+1) = (2*n + 1)*tau(2*n+1), where tau(n) = A000005(n), the number of divisors of n.
The sequence {(1/4)*( D(2*n) - D(n) ) : n >= 1} begins {1, 3, 6, 8, 10, 18, 14, 20, 27, 30, 22, 48, 26, 42, 60, 48, 34, 81, 38, 80, 84, 66, ...} and appears to be multiplicative. (End)
Sum_{k=1..n} a(k) ~ 4*n^2 * (log(n) - 1/2 + 2*gamma - log(2)/3 - 6*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024

Extensions

New name according to the formula by Peter Bala from Vaclav Kotesovec, Jan 13 2024

A006579 a(n) = Sum_{k=1..n-1} gcd(n,k).

Original entry on oeis.org

0, 1, 2, 4, 4, 9, 6, 12, 12, 17, 10, 28, 12, 25, 30, 32, 16, 45, 18, 52, 44, 41, 22, 76, 40, 49, 54, 76, 28, 105, 30, 80, 72, 65, 82, 132, 36, 73, 86, 140, 40, 153, 42, 124, 144, 89, 46, 192, 84, 145, 114, 148, 52, 189, 134, 204, 128, 113, 58, 300, 60, 121, 210, 192
Offset: 1

Views

Author

Keywords

Comments

This sequence for a(n) also arises in the following context. If f(x) is a monic univariate polynomial of degree d>1 over Zn (= Z/nZ, the ring of integers modulo n), and we let X be the number of distinct roots of f(x) in Zn taken over all n^d choices for f(x), then the variance Var[X] = a(n)/n and the expected value E[X] = 1. - Michael Monagan, Sep 11 2015
Conjecture: a(n) != -1 (mod n) for a composite n. - Thomas Ordowski, Jun 11 2025

Examples

			a(12) = gcd(12,1) + gcd(12,2) + ... + gcd(12,11) = 1 + 2 + 3 + 4 + 1 + 6 + 1 + 4 + 3 + 2 + 1 = 28.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003989.
Cf. A018804.

Programs

  • Maple
    a:= n-> add(igcd(n, k), k=1..n-1):
    seq(a(n), n=1..64);
  • Mathematica
    f[n_] := Sum[ GCD[n, k], {k, 1, n - 1}]; Table[ f[n], {n, 1, 60}]
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    A006579(n) = sum(k=1,n-1,gcd(n,k)) \\ Michael B. Porter, Feb 23 2010
    
  • Python
    from math import prod
    from sympy import factorint
    def A006579(n): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) - n # Chai Wah Wu, May 15 2022

Formula

a(p) = p-1 for a prime p.
a(n) = A018804(n)-n = Sum_{ d divides n } (d-1)*phi(n/d). - Vladeta Jovovic, May 04 2002
a(n+2) = Sum_{k=0..n} gcd(n-k+1, k+1) = -Sum_{k=0..4n+2} gcd(4n-k+3, k+1)*(-1)^k/4. - Paul Barry, May 03 2005
G.f.: Sum_{k>=1} phi(k) * x^(2*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Feb 06 2020
a(p^k) = k(p-1)p^(k-1) for prime p. - Chai Wah Wu, May 15 2022

Extensions

More terms from Robert G. Wilson v, May 04 2002
Corrected by Ron Lalonde (ronronronlalonde(AT)hotmail.com), Oct 24 2002

A343497 a(n) = Sum_{k=1..n} gcd(k, n)^3.

Original entry on oeis.org

1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    with(numtheory):
    seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
  • Mathematica
    a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
    A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^3);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
    
  • SageMath
    def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^3.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_2(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^4.
Dirichlet g.f.: zeta(s-1) * zeta(s-3) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 45*zeta(3)*n^4 / (2*Pi^4). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*((p^2+p+1)*p^(2*e) - 1)/(p+1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n) = Sum_{d divides n} d * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 20 2024

A343498 a(n) = Sum_{k=1..n} gcd(k, n)^4.

Original entry on oeis.org

1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^4);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
    
  • SageMath
    def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^4.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_3(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5.
Dirichlet g.f.: zeta(s-1) * zeta(s-4) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (450*zeta(5)). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k, l <= n} gcd(i, j, k, l, n) = Sum_{d divides n} d * J_4(n/d), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 18 2024

A343510 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
   1,  1,   1,    1,     1,      1,      1, ...
   3,  5,   9,   17,    33,     65,    129, ...
   5, 11,  29,   83,   245,    731,   2189, ...
   8, 22,  74,  274,  1058,   4162,  16514, ...
   9, 29, 129,  629,  3129,  15629,  78129, ...
  15, 55, 261, 1411,  8085,  47515, 282381, ...
  13, 55, 349, 2407, 16813, 117655, 823549, ...
		

Crossrefs

Columns k=1..7 give A018804, A069097, A343497, A343498, A343499, A343508, A343509.
T(n-2,n) gives A342432.
T(n-1,n) gives A342433.
T(n,n) gives A332517.
T(n,n+1) gives A321294.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, gcd(j, n)^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
    
  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));

Formula

G.f. of column k: Sum_{i>=1} phi(i) * ( Sum_{j=1..k} A008292(k, j) * x^(i*j) )/(1 - x^i)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * d^k.
T(n,k) = Sum_{d|n} mu(n/d) * d * sigma_{k-1}(d).
Dirichlet g.f. of column k: zeta(s-1) * zeta(s-k) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
T(n,k) = Sum_{j=1..n} (n/gcd(n,j))^k*phi(gcd(n,j))/phi(n/gcd(n,j)). - Richard L. Ollerton, May 10 2021
T(n,k) = Sum_{1 <= j_1, j_2, ..., j_k <= n} gcd(j_1, j_2, ..., j_k)^2 = Sum_{d divides n} d * J_k(n/d), where J_k(n) denotes the k-th Jordan totient function. - Peter Bala, Jan 29 2024

A299149 Numerators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 3, 3, 5, 3, 7, 5, 27, 5, 11, 9, 13, 7, 15, 35, 17, 27, 19, 15, 21, 11, 23, 15, 75, 13, 135, 21, 29, 15, 31, 63, 33, 17, 35, 81, 37, 19, 39, 25, 41, 21, 43, 33, 135, 23, 47, 105, 147, 75, 51, 39, 53, 135, 55, 35, 57, 29, 59, 45, 61, 31, 189, 231, 65, 33
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

Dirichlet convolution of a(n)/A046644(n) with itself yields A000265. - Antti Karttunen, Aug 30 2018

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    odd[n_] := n/2^IntegerExponent[n, 2]; f[p_, e_] := odd[p^e*Binomial[2*e, e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); numerator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 09 2018
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator(n*A317848(n)/A165825(n)) = A000265(n*A317848(n)). - Andrew Howroyd, Aug 09 2018
Sum_{k=1..n} A299149(k)/A299150(k) ~ n^2 / (2*sqrt(Pi*log(n))) * (1 + (1-gamma) / (4*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 09 2025

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A343516 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 9, 1, 7, 17, 26, 19, 15, 1, 8, 23, 42, 39, 35, 13, 1, 9, 30, 64, 74, 76, 34, 20, 1, 10, 38, 93, 130, 153, 90, 56, 21, 1, 11, 47, 130, 214, 287, 216, 152, 63, 27, 1, 12, 57, 176, 334, 506, 468, 379, 191, 86, 21
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Examples

			T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
Square array begins:
   1,  1,  1,   1,   1,   1,    1, ...
   3,  4,  5,   6,   7,   8,    9, ...
   5,  8, 12,  17,  23,  30,   38, ...
   8, 15, 26,  42,  64,  93,  130, ...
   9, 19, 39,  74, 130, 214,  334, ...
  15, 35, 76, 153, 287, 506,  846, ...
  13, 34, 90, 216, 468, 930, 1722, ...
		

Crossrefs

Columns k=1..7 give A018804, A309322, A309323, A343518, A343519, A343520, A343521.
Main diagonal gives A343517.
T(n,n-1) gives A343553.
Cf. A343510.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} phi(j) * x^j/(1 - x^j)^(k+1).
T(n,k) = Sum_{d|n} phi(n/d) * binomial(d+k-1, k).

A051193 a(n) = Sum_{k=1..n} lcm(n,k).

Original entry on oeis.org

1, 4, 12, 24, 55, 66, 154, 176, 279, 320, 616, 468, 1027, 910, 1110, 1376, 2329, 1656, 3268, 2320, 3171, 3674, 5842, 3624, 6525, 6136, 7398, 6636, 11803, 6630, 14446, 10944, 12837, 13940, 15820, 12096, 24679, 19570, 21450, 18080, 33661, 18984, 38872, 26884
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000010, A018804, A051173 (triangle whose n-th row sum is a(n)), A057660, A057661.

Programs

  • Haskell
    a051193 = sum . a051173_row  -- Reinhard Zumkeller, Feb 11 2014
    
  • Maple
    a:=n->add(ilcm( n, j ), j=1..n): seq(a(n), n=1..50); # Zerinvary Lajos, Nov 07 2006
  • Mathematica
    Table[Sum[LCM[k, n], {k, 1, n}], {n, 1, 39}] (* Geoffrey Critzer, Feb 16 2015 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := n * (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    a(n) = sum(k=1, n, lcm(n,k)); \\ Michel Marcus, Feb 06 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A051193(n): return n*(1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = n*(1+Sum_{d|n} d*phi(d))/2 = n*(1+A057660(n))/2 = n*A057661(n). - Vladeta Jovovic, Jun 21 2002
G.f.: x*f'(x), where f(x) = x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k) and phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ 3 * zeta(3) * n^4 / (4*Pi^2). - Vaclav Kotesovec, May 29 2021

A196443 a(n) = the sum of GCQ_A(n, k) for 1 <= k <= n (see definition in comments).

Original entry on oeis.org

0, 0, 2, 3, 9, 9, 20, 24, 32, 41, 54, 55, 77, 87, 100, 115, 135, 145, 170, 180, 205, 227, 252, 263, 298, 321, 346, 372, 405, 424, 464, 490, 523, 557, 592, 616, 665, 699, 736, 768, 819, 850, 902, 940, 983, 1031, 1080, 1113, 1174, 1219
Offset: 1

Views

Author

Jaroslav Krizek, Nov 26 2011

Keywords

Comments

Definition of GCQ_A: The greatest common non-divisor of type A (GCQ_A) of two positive integers a and b (a<=b) is the largest positive non-divisor q of numbers a and b such that 1<=q<=a common to a and b; GCQ_A(a, b) = 0 if no such c exists.
GCQ_A(1, b) = GCQ_A(2, b) = 0 for b >=1. GCQ_A(a, b) = 0 or >= 2.

Examples

			 For n = 6, a(6) = 9 because GCQ_A(6, 1) = 0, GCQ_A(6, 2) = 0, GCQ_A(6, 3) = 0, GCQ_A(6, 4) = 0, GCQ_A(6, 5) = 4, GCQ_A(6, 6) = 5. Sum of results is 9.
		

Crossrefs

Cf. A199972 (the sum of GCQ_B(n, k) for 1<= k <= n).
Cf. A199973 (the sum of LCQ_B(n, k) for 1 <= k <= n).

A372792 Number of divisors of 12n; a(n) = tau(12*n) = A000005(12*n).

Original entry on oeis.org

6, 8, 9, 10, 12, 12, 12, 12, 12, 16, 12, 15, 12, 16, 18, 14, 12, 16, 12, 20, 18, 16, 12, 18, 18, 16, 15, 20, 12, 24, 12, 16, 18, 16, 24, 20, 12, 16, 18, 24, 12, 24, 12, 20, 24, 16, 12, 21, 18, 24, 18, 20, 12, 20, 24, 24, 18, 16, 12, 30, 12, 16, 24, 18, 24, 24
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Comments

In general, for m>=1, Sum_{j=1..n} tau(m*j) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{j=1..n} tau(p*j) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 12*n], {n, 1, 150}]
  • PARI
    A372792(n) = numdiv(12*n); \\ Antti Karttunen, Jul 19 2024

Formula

Sum_{k=1..n} a(k) ~ (40*n*(log(n) + 2*gamma - 1) + n*(20*log(2) + 8*log(3))) / 12, where gamma is the Euler-Mascheroni constant A001620.
Previous Showing 51-60 of 165 results. Next