A344372
a(n) = Sum_{k = 1..n} gcd(2*k, n).
Original entry on oeis.org
1, 4, 5, 12, 9, 20, 13, 32, 21, 36, 21, 60, 25, 52, 45, 80, 33, 84, 37, 108, 65, 84, 45, 160, 65, 100, 81, 156, 57, 180, 61, 192, 105, 132, 117, 252, 73, 148, 125, 288, 81, 260, 85, 252, 189, 180, 93, 400, 133, 260, 165, 300, 105, 324, 189, 416, 185, 228, 117, 540, 121, 244, 273
Offset: 1
a(6) = 20: the 20 solutions to the congruence 2*x*y == 0 (mod 6) for 1 <= x, y <= 6 are the pairs (x, y) = (k, 6) for 1 <= k <= 6, the pairs (6, k) for 1 <= k <= 5, the pairs (3, k) for 1 <= k <= 5 and the pairs (1, 3), (2, 3), (4, 3) and (5, 3). - _Peter Bala_, Jan 11 2024
-
seq(add((-1)^k*gcd(k, 2*n), k = 1..2*n), n = 1..70);
# alternative faster program for large n
with(numtheory): seq(add(gcd(2,d)*phi(d)*n/d, d in divisors(n)), n = 1..70); # Peter Bala, Jan 08 2024
-
f[p_, e_] := (e + 1)*p^e - e*p^(e - 1); f[2, e_] := (e + 1)*2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)
Table[Sum[GCD[2*k, n], {k, 1, n}], {n, 1, 60}] (* or *)
Table[Sum[(-1)^k * GCD[k, 2*n], {k, 1, 2*n}], {n, 1, 60}] (* Vaclav Kotesovec, Jan 13 2024 *)
-
{ A344372(n) = my(f=factor(n)); prod(i=1,#f~, (f[i,2]+1)*f[i,1]^f[i,2] - if(f[i,1]>2,f[i,2]*f[i, 1]^(f[i,2]-1)) ); }
-
a(n) = sum(k=1, 2*n, (-1)^k*gcd(k,2*n)); \\ Michel Marcus, May 17 2021
New name according to the formula by Peter Bala from
Vaclav Kotesovec, Jan 13 2024
A006579
a(n) = Sum_{k=1..n-1} gcd(n,k).
Original entry on oeis.org
0, 1, 2, 4, 4, 9, 6, 12, 12, 17, 10, 28, 12, 25, 30, 32, 16, 45, 18, 52, 44, 41, 22, 76, 40, 49, 54, 76, 28, 105, 30, 80, 72, 65, 82, 132, 36, 73, 86, 140, 40, 153, 42, 124, 144, 89, 46, 192, 84, 145, 114, 148, 52, 189, 134, 204, 128, 113, 58, 300, 60, 121, 210, 192
Offset: 1
a(12) = gcd(12,1) + gcd(12,2) + ... + gcd(12,11) = 1 + 2 + 3 + 4 + 1 + 6 + 1 + 4 + 3 + 2 + 1 = 28.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Antidiagonal sums of array
A003989.
-
a:= n-> add(igcd(n, k), k=1..n-1):
seq(a(n), n=1..64);
-
f[n_] := Sum[ GCD[n, k], {k, 1, n - 1}]; Table[ f[n], {n, 1, 60}]
f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
-
A006579(n) = sum(k=1,n-1,gcd(n,k)) \\ Michael B. Porter, Feb 23 2010
-
from math import prod
from sympy import factorint
def A006579(n): return prod(p**(e-1)*((p-1)*e+p) for p, e in factorint(n).items()) - n # Chai Wah Wu, May 15 2022
Corrected by Ron Lalonde (ronronronlalonde(AT)hotmail.com), Oct 24 2002
A343497
a(n) = Sum_{k=1..n} gcd(k, n)^3.
Original entry on oeis.org
1, 9, 29, 74, 129, 261, 349, 596, 789, 1161, 1341, 2146, 2209, 3141, 3741, 4776, 4929, 7101, 6877, 9546, 10121, 12069, 12189, 17284, 16145, 19881, 21321, 25826, 24417, 33669, 29821, 38224, 38889, 44361, 45021, 58386, 50689, 61893, 64061, 76884, 68961, 91089, 79549, 99234, 101781
Offset: 1
Cf.
A000010,
A001157 (sigma_2(n)),
A018804,
A054610,
A069097,
A309323,
A332517,
A342423,
A342433,
A343498,
A343499,
A343513.
-
A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
with(numtheory):
seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
-
a[n_] := Sum[GCD[k, n]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e - 1)*((p^2 + p + 1)*p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
-
a(n) = sum(k=1, n, gcd(k, n)^3);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^3);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 2));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4))
-
def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343497(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343498
a(n) = Sum_{k=1..n} gcd(k, n)^4.
Original entry on oeis.org
1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1
Cf.
A000010,
A001158 (sigma_3(n)),
A018804,
A054611,
A069097,
A332517,
A342423,
A342433,
A343497,
A343499,
A343514.
-
A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
-
a(n) = sum(k=1, n, gcd(k, n)^4);
-
a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
-
a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
-
def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024
A343510
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{j=1..n} gcd(j, n)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 9, 1, 33, 83, 74, 29, 15, 1, 65, 245, 274, 129, 55, 13, 1, 129, 731, 1058, 629, 261, 55, 20, 1, 257, 2189, 4162, 3129, 1411, 349, 92, 21, 1, 513, 6563, 16514, 15629, 8085, 2407, 596, 105, 27, 1, 1025, 19685, 65794, 78129, 47515, 16813, 4388, 789, 145, 21
Offset: 1
G.f. of column 3: Sum_{i>=1} phi(i) * (x^i + 4*x^(2*i) + x^(3*i))/(1 - x^i)^4.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, 129, ...
5, 11, 29, 83, 245, 731, 2189, ...
8, 22, 74, 274, 1058, 4162, 16514, ...
9, 29, 129, 629, 3129, 15629, 78129, ...
15, 55, 261, 1411, 8085, 47515, 282381, ...
13, 55, 349, 2407, 16813, 117655, 823549, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * #^k &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sum(j=1, n, gcd(j, n)^k);
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*d^k);
-
T(n, k) = sumdiv(n, d, moebius(n/d)*d*sigma(d, k-1));
A299149
Numerators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).
Original entry on oeis.org
1, 1, 3, 3, 5, 3, 7, 5, 27, 5, 11, 9, 13, 7, 15, 35, 17, 27, 19, 15, 21, 11, 23, 15, 75, 13, 135, 21, 29, 15, 31, 63, 33, 17, 35, 81, 37, 19, 39, 25, 41, 21, 43, 33, 135, 23, 47, 105, 147, 75, 51, 39, 53, 135, 55, 35, 57, 29, 59, 45, 61, 31, 189, 231, 65, 33
Offset: 1
Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
Cf.
A000010,
A000265,
A003958,
A007431,
A018804,
A023900,
A029935,
A046643,
A046644,
A165825,
A257098,
A298971,
A299119,
A299150 (denominators),
A299151,
A317848,
A318319,
A318321,
A318649.
-
nn=50;
sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
odd[n_] := n/2^IntegerExponent[n, 2]; f[p_, e_] := odd[p^e*Binomial[2*e, e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
-
a(n)={my(v=factor(n)[,2]); numerator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
-
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 09 2018
-
for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
A343516
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ... , x_k, n).
Original entry on oeis.org
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 9, 1, 7, 17, 26, 19, 15, 1, 8, 23, 42, 39, 35, 13, 1, 9, 30, 64, 74, 76, 34, 20, 1, 10, 38, 93, 130, 153, 90, 56, 21, 1, 11, 47, 130, 214, 287, 216, 152, 63, 27, 1, 12, 57, 176, 334, 506, 468, 379, 191, 86, 21
Offset: 1
T(4,2) = gcd(1,1,4) + gcd(1,2,4) + gcd(2,2,4) + gcd(1,3,4) + gcd(2,3,4) + gcd(3,3,4) + gcd(1,4,4) + gcd(2,4,4) + gcd(3,4,4) + gcd(4,4,4) = 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 4 = 15.
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, 9, ...
5, 8, 12, 17, 23, 30, 38, ...
8, 15, 26, 42, 64, 93, 130, ...
9, 19, 39, 74, 130, 214, 334, ...
15, 35, 76, 153, 287, 506, 846, ...
13, 34, 90, 216, 468, 930, 1722, ...
-
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] * Binomial[k + # - 1, k] &]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 18 2021 *)
-
T(n, k) = sumdiv(n, d, eulerphi(n/d)*binomial(d+k-1, k));
A051193
a(n) = Sum_{k=1..n} lcm(n,k).
Original entry on oeis.org
1, 4, 12, 24, 55, 66, 154, 176, 279, 320, 616, 468, 1027, 910, 1110, 1376, 2329, 1656, 3268, 2320, 3171, 3674, 5842, 3624, 6525, 6136, 7398, 6636, 11803, 6630, 14446, 10944, 12837, 13940, 15820, 12096, 24679, 19570, 21450, 18080, 33661, 18984, 38872, 26884
Offset: 1
- Akshay Bansal, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Akshay Bansal, C Program.
- Soichi Ikeda and Kaneaki Matsuoka, On the Lcm-Sum Function, Journal of Integer Sequences, Vol. 17 (2014), Article 14.1.7.
- László Tóth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7.
- Index entries for sequences related to lcm's.
-
a051193 = sum . a051173_row -- Reinhard Zumkeller, Feb 11 2014
-
a:=n->add(ilcm( n, j ), j=1..n): seq(a(n), n=1..50); # Zerinvary Lajos, Nov 07 2006
-
Table[Sum[LCM[k, n], {k, 1, n}], {n, 1, 39}] (* Geoffrey Critzer, Feb 16 2015 *)
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := n * (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
-
a(n) = sum(k=1, n, lcm(n,k)); \\ Michel Marcus, Feb 06 2015
-
from math import prod
from sympy import factorint
def A051193(n): return n*(1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1) # Chai Wah Wu, Aug 05 2024
A196443
a(n) = the sum of GCQ_A(n, k) for 1 <= k <= n (see definition in comments).
Original entry on oeis.org
0, 0, 2, 3, 9, 9, 20, 24, 32, 41, 54, 55, 77, 87, 100, 115, 135, 145, 170, 180, 205, 227, 252, 263, 298, 321, 346, 372, 405, 424, 464, 490, 523, 557, 592, 616, 665, 699, 736, 768, 819, 850, 902, 940, 983, 1031, 1080, 1113, 1174, 1219
Offset: 1
For n = 6, a(6) = 9 because GCQ_A(6, 1) = 0, GCQ_A(6, 2) = 0, GCQ_A(6, 3) = 0, GCQ_A(6, 4) = 0, GCQ_A(6, 5) = 4, GCQ_A(6, 6) = 5. Sum of results is 9.
Cf.
A199972 (the sum of GCQ_B(n, k) for 1<= k <= n).
Cf.
A199973 (the sum of LCQ_B(n, k) for 1 <= k <= n).
A372792
Number of divisors of 12n; a(n) = tau(12*n) = A000005(12*n).
Original entry on oeis.org
6, 8, 9, 10, 12, 12, 12, 12, 12, 16, 12, 15, 12, 16, 18, 14, 12, 16, 12, 20, 18, 16, 12, 18, 18, 16, 15, 20, 12, 24, 12, 16, 18, 16, 24, 20, 12, 16, 18, 24, 12, 24, 12, 20, 24, 16, 12, 21, 18, 24, 18, 20, 12, 20, 24, 24, 18, 16, 12, 30, 12, 16, 24, 18, 24, 24
Offset: 1
Cf.
A000005,
A099777,
A372713,
A372784,
A372785,
A372786,
A372787,
A372788,
A372789,
A372790,
A372791.
Comments