cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A071645 a(n) = A051193(A072109(n))/A018804(A072109(n)).

Original entry on oeis.org

1, 3, 72, 1915, 25795, 19162, 20236, 75259, 1554957, 1491432, 17313036, 16732368, 24256243, 36578268, 44514226, 75661104, 292402908, 5482272832, 1178829937, 5302997764, 18154748952, 28439854393, 16773808684, 47254132795, 53265315697, 74423911503, 141806992844
Offset: 1

Views

Author

Vladeta Jovovic, Jun 22 2002

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Apr 26 2023

A057660 a(n) = Sum_{k=1..n} n/gcd(n,k).

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 43, 61, 63, 111, 77, 157, 129, 147, 171, 273, 183, 343, 231, 301, 333, 507, 301, 521, 471, 547, 473, 813, 441, 931, 683, 777, 819, 903, 671, 1333, 1029, 1099, 903, 1641, 903, 1807, 1221, 1281, 1521, 2163, 1197, 2101, 1563, 1911, 1727
Offset: 1

Views

Author

Henry Gould, Oct 15 2000

Keywords

Comments

Also sum of the orders of the elements in a cyclic group with n elements, i.e., row sums of A054531. - Avi Peretz (njk(AT)netvision.net.il), Mar 31 2001
Also inverse Moebius transform of EulerPhi(n^2), A002618.
Sequence is multiplicative with a(p^e) = (p^(2*e+1)+1)/(p+1). Example: a(10) = a(2)*a(5) = 3*21 = 63.
a(n) is the number of pairs (a, b) such that the equation ax = b is solvable in the ring (Zn, +, x). See the Mathematical Reflections link. - Michel Marcus, Jan 07 2017
From Jake Duzyk, Jun 06 2023: (Start)
These are the "contraharmonic means" of the improper divisors of square integers (inclusive of 1 and the square integer itself).
Permitting "Contraharmonic Divisor Numbers" to be defined analogously to Øystein Ore's Harmonic Divisor Numbers, the only numbers for which there exists an integer contraharmonic mean of the divisors are the square numbers, and a(n) is the n-th integer contraharmonic mean, expressible also as the sum of squares of divisors of n^2 divided by the sum of divisors of n^2. That is, a(n) = sigma_2(n^2)/sigma(n^2).
(a(n) = A001157(k)/A000203(k) where k is the n-th number such that A001157(k)/A000203(k) is an integer, i.e., k = n^2.)
This sequence is an analog of A001600 (Harmonic means of divisors of harmonic numbers) and A102187 (Arithmetic means of divisors of arithmetic numbers). (End)

References

  • David M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 152.
  • H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), Vol. 39, No. 1 (1997), pp. 11-35.
  • H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), Vol. 39, No. 2 (1997), pp. 183-194.

Crossrefs

Programs

  • Haskell
    a057660 n = sum $ map (div n) $ a050873_row n
    -- Reinhard Zumkeller, Nov 25 2013
    
  • Mathematica
    Table[ DivisorSigma[ 2, n^2 ] / DivisorSigma[ 1, n^2 ], {n, 1, 128} ]
    Table[Total[Denominator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 21 2020 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)))
    
  • PARI
    a(n)=sumdivmult(n,d, eulerphi(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import gcd
    def A057660(n): return sum(n//gcd(n,k) for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A057660(n): return prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = Sum_{d|n} d*A000010(d) = Sum_{d|n} d*A054522(n,d), sum of d times phi(d) for all divisors d of n, where phi is Euler's phi function.
a(n) = sigma_2(n^2)/sigma_1(n^2) = A001157(A000290(n))/A000203(A000290(n)) = A001157(A000290(n))/A065764(n). - Labos Elemer, Nov 21 2001
a(n) = Sum_{d|n} A000010(d^2). - Enrique Pérez Herrero, Jul 12 2010
a(n) <= (n-1)*n + 1, with equality if and only if n is noncomposite. - Daniel Forgues, Apr 30 2013
G.f.: Sum_{n >= 1} n*phi(n)*x^n/(1 - x^n) = x + 3*x^2 + 7*x^3 + 11*x^4 + .... Dirichlet g.f.: sum {n >= 1} a(n)/n^s = zeta(s)*zeta(s-2)/zeta(s-1) for Re s > 3. Cf. A078747 and A176797. - Peter Bala, Dec 30 2013
a(n) = Sum_{i=1..n} numerator(n/i). - Wesley Ivan Hurt, Feb 26 2017
L.g.f.: -log(Product_{k>=1} (1 - x^k)^phi(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} lcm(n,k)/k.
a(n) = Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
From Vaclav Kotesovec, Jun 13 2021: (Start)
Sum_{k=1..n} a(k)/k ~ 3*zeta(3)*n^2/Pi^2.
Sum_{k=1..n} k^2/a(k) ~ A345294 * n.
Sum_{k=1..n} k*A000010(k)/a(k) ~ A345295 * n. (End)
Sum_{k=1..n} a(k) ~ 2*zeta(3)*n^3/Pi^2. - Vaclav Kotesovec, Jun 10 2023

Extensions

More terms from James Sellers, Oct 16 2000

A057661 a(n) = Sum_{k=1..n} lcm(n,k)/n.

Original entry on oeis.org

1, 2, 4, 6, 11, 11, 22, 22, 31, 32, 56, 39, 79, 65, 74, 86, 137, 92, 172, 116, 151, 167, 254, 151, 261, 236, 274, 237, 407, 221, 466, 342, 389, 410, 452, 336, 667, 515, 550, 452, 821, 452, 904, 611, 641, 761, 1082, 599, 1051, 782, 956, 864, 1379, 821, 1166
Offset: 1

Views

Author

Henry Gould, Oct 15 2000

Keywords

Comments

Sum of numerators of n-th order Farey series (cf. A006842). - Benoit Cloitre, Oct 28 2002
Equals row sums of triangle A143613. - Gary W. Adamson, Aug 27 2008
Equals row sums of triangle A159936. - Gary W. Adamson, Apr 26 2009
Also row sums of triangle A164306. - Reinhard Zumkeller, Aug 12 2009

References

  • H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), 39 (1997), 11-35.
  • H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), 39 (1997), 183-194.

Crossrefs

Programs

  • Haskell
    a057661 n = a051193 n `div` n  -- Reinhard Zumkeller, Jun 10 2015
    
  • Magma
    [&+[&+[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016
    
  • Mathematica
    Table[Total[Numerator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    a(n)=sum(k=1,n,lcm(n,k))/n \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import lcm
    def A057661(n): return sum(lcm(n,k)//n for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A057661(n): return 1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1 # Chai Wah Wu, Aug 05 2024

Formula

a(n) = (1+A057660(n))/2.
a(n) = A051193(n)/n.
a(n) = Sum_{d|n} psi(d), where psi(m) = is the sum of totatives of m (A023896). - Jaroslav Krizek, Dec 28 2016
a(n) = Sum_{i=1..n} denominator(n/i). - Wesley Ivan Hurt, Feb 26 2017
G.f.: x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
If p is prime, then a(p) = T(p-1) + 1 = p(p-1)/2 + 1, where T(n) = n(n+1)/2 is the n-th triangular number (A000217). - David Terr, Feb 10 2019
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, May 29 2021
Dirichlet g.f.: zeta(s)*(1 + zeta(s-2)/zeta(s-1))/2 (Franco, 2019). - Amiram Eldar, Mar 26 2022

Extensions

More terms from James Sellers, Oct 16 2000

A051173 Triangle read by rows: T(n, k) = lcm(n, k).

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 4, 12, 4, 5, 10, 15, 20, 5, 6, 6, 6, 12, 30, 6, 7, 14, 21, 28, 35, 42, 7, 8, 8, 24, 8, 40, 24, 56, 8, 9, 18, 9, 36, 45, 18, 63, 72, 9, 10, 10, 30, 20, 10, 30, 70, 40, 90, 10, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 11, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins (for the full array see A109042):
  [1]  1;
  [2]  2,  2;
  [3]  3,  6,  3;
  [4]  4,  4, 12,  4;
  [5]  5, 10, 15, 20,  5;
  [6]  6,  6,  6, 12, 30,  6;
  [7]  7, 14, 21, 28, 35, 42,  7;
  [8]  8,  8, 24,  8, 40, 24, 56,  8;
		

Crossrefs

Cf. A109043 (column 2), A051193 (row sums), A000384 (central terms).

Programs

  • Haskell
    a051173 = lcm
    a051173_row n = a051173_tabl !! (n-1)
    a051173_tabl = map (\x -> map (lcm x) [1..x]) [1..]
    -- Reinhard Zumkeller, Aug 13 2013, Jul 07 2013
    
  • Maple
    A051173 := proc(u,v) ilcm(u,v) ; end proc: # R. J. Mathar, Apr 07 2011
  • Mathematica
    Table[LCM[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    T(n,k) = lcm(n,k);
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print;) \\ Michel Marcus, Jul 10 2017

Formula

T(n, 1) = T(n, n) = n. T(n, 2) = A109043(n). - R. J. Mathar, Apr 07 2011
T(n, k) = A075362(n, k)/A050873(n, k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = A051537(n, k) * A050873(n, k). - Reinhard Zumkeller, Jul 07 2013

A064951 a(n) = Sum_{1 <= x, y <= n} lcm(x, y).

Original entry on oeis.org

1, 7, 28, 72, 177, 303, 604, 948, 1497, 2127, 3348, 4272, 6313, 8119, 10324, 13060, 17701, 20995, 27512, 32132, 38453, 45779, 57440, 64664, 77689, 89935, 104704, 117948, 141525, 154755, 183616, 205472, 231113, 258959, 290564, 314720, 364041
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Comments

a(n) is also the entrywise 1-norm of the n X n LCM matrix.

Crossrefs

Programs

  • Mathematica
    Table[nn = n;Total[Level[Table[Table[LCM[i, j], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 37}] (* Geoffrey Critzer, Jan 14 2015 *)
  • PARI
    { a=0; for (n=1, 1000, a+=n*sum(k=1, n, n/gcd(n, k)); write("b064951.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = a(n-1) + 2*A051193(n) - n = a(n-1) + n*A057660(n) = Sum_{1 <= i <= j <= n} (j^2/gcd(i, j)). - Henry Bottomley, Oct 29 2001
a(n) ~ 3 * zeta(3) * n^4 / (2*Pi^2). - Vaclav Kotesovec, May 29 2021

A344508 a(n) = Sum_{k=1..n} k * lcm(k,n).

Original entry on oeis.org

1, 6, 24, 64, 175, 270, 686, 928, 1647, 2150, 4356, 3792, 8619, 8526, 11250, 14592, 25721, 19926, 40432, 31200, 44835, 53966, 87814, 58272, 108125, 106470, 132678, 124656, 224547, 132750, 294066, 232960, 284229, 316166, 372400, 291168, 600991, 496014, 560742, 484000, 909421, 531846
Offset: 1

Views

Author

Seiichi Manyama, May 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k * LCM[k, n], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 21 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*lcm(k, n));

Formula

Sum_{k=1..n} a(k) ~ 2 * zeta(3) * n^5 / (5*Pi^2). - Vaclav Kotesovec, May 29 2021

A072109 Numbers k such that Sum_{i=1..k} gcd(k,i) divides Sum_{i=1..k} lcm(k,i).

Original entry on oeis.org

1, 4, 36, 125, 469, 536, 882, 1156, 8532, 8775, 25012, 32000, 34749, 36324, 37179, 61952, 147456, 405224, 451584, 644304, 954084, 1185921, 1560546, 1562500, 1982464, 3080025, 5229378, 5784025, 6138868, 9231327, 12806144, 22108500, 25509168, 25562264, 29762208, 40894464, 45001899, 47397636, 49242375
Offset: 1

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 10^6 do a := divisors(n): s1 := add(a[m]*phi(a[m]),m=1..nops(a)): s2 := add(phi(a[m])/a[m],m=1..nops(a)): if type((s1+1)/(2*s2),integer) then printf(`%d,`,n); fi: od:
  • Mathematica
    f[n_] := (k = n; While[ !IntegerQ[ Sum[ LCM[k, i], {i, 1, k}] / Sum[ GCD[k, i], {i, 1, k}]], k++ ]; k); j = 1; Do[ m = f[j]; Print[m]; j = m + 1, {n, 1, 9}]
    f1[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); f2[p_, e_] := e*(p - 1)/p + 1; q[n_] := IntegerQ[(1 + Times @@ f1 @@@ (fct = FactorInteger[n]))/(2 * Times @@ f2 @@@ fct)]; Select[Range[10^5], q] (* Amiram Eldar, May 02 2023 *)
  • PARI
    for(n=1,1156,if(sum(i=1,n,lcm(n,i))%sum(i=1,n,gcd(n,i))==0,print1(n,",")))
    
  • PARI
    is(n) = {my(f = factor(n)); (1 + prod(i = 1, #f~, (f[i,1]^(2*f[i,2] + 1) + 1)/(f[i,1] + 1))) % (2*prod(i = 1, #f~, (f[i,2]*(f[i,1] - 1)/f[i,1] + 1))) == 0;} \\ Amiram Eldar, May 02 2023

Formula

Numbers k such that A018804(k) divides A051193(k).

Extensions

Edited by Robert G. Wilson v, Jun 22 2002
More terms from Vladeta Jovovic, Jun 22 2002
More terms from Sean A. Irvine, Feb 01 2011
Corrected definition - Richard L. Ollerton, May 06 2021

A199806 Alternating LCM-sum: a(n) = Sum_{k=1..n} (-1)^(k-1)*lcm(k,n).

Original entry on oeis.org

1, 0, 0, 8, -5, 18, -14, 80, -9, 100, -44, 204, -65, 294, 30, 672, -119, 540, -152, 1040, 63, 1210, -230, 1752, -75, 2028, -54, 2996, -377, 2190, -434, 5440, 165, 4624, 280, 5472, -629, 6498, 234, 8800, -779, 6300, -860, 12188, 225, 11638, -1034, 14256, -245, 13000
Offset: 1

Views

Author

Laszlo Toth, Nov 10 2011

Keywords

Crossrefs

Programs

A308457 Expansion of e.g.f. (1/(1 - x)) * Product_{k>=2} 1/(1 - x^k)^(phi(k)/2), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 3, 15, 93, 765, 6615, 73395, 855225, 11348505, 163593675, 2633729175, 44537325525, 829112008725, 16299062754975, 340762189642875, 7597436750528625, 178862527106888625, 4426363064514265875, 115222810432347993375, 3139125774622690978125
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^(EulerPhi[k]/2), {k, 2, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[Exp[Sum[Sum[LCM[k, j], {j, 1, k}] x^k/k^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Total[Numerator[Range[k]/k]] k! Binomial[n - 1, k - 1] a[n - k]/k, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(Sum_{k>=1} A057661(k)*x^k/k).
E.g.f.: exp(Sum_{k>=1} A051193(k)*x^k/k^2).
E.g.f.: d/dx ( exp(arctanh(x)) ) * Product_{k>=3} 1/(1 - x^k)^A023022(k).
a(n) ~ A * exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi)^(2/3) - n - 1/12) * n^(n + 1/36) / (2^(1/9) * 3^(19/36) * (Pi*Zeta(3))^(1/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 28 2019
E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A023896(k)/k). - Ilya Gutkovskiy, May 28 2019

A338798 a(n) = Sum_{k=1..n-1} lcm(lcm(n, k), lcm(n, n-k)).

Original entry on oeis.org

0, 2, 12, 28, 100, 90, 392, 408, 792, 810, 2420, 1356, 4732, 3346, 4560, 6320, 13872, 7506, 21660, 12140, 18900, 21802, 46552, 22008, 53000, 43290, 61668, 49980, 117740, 48450, 153760, 100192, 123552, 129506, 169260, 111420, 312132, 203642, 245544, 195640
Offset: 1

Views

Author

Sebastian Karlsson, Jan 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[LCM[LCM[n, k], LCM[n, n - k]], {k, 1, n - 1}];
    Table[a[n], {n, 1, 40}] (* Robert P. P. McKone, Jan 18 2021 *)
  • PARI
    a(n) = sum(k=1, n-1, lcm(lcm(n, k), lcm(n, n-k))); \\ Michel Marcus, Jan 18 2021
  • Python
    from math import gcd
    for n in range(1, 41):
        print(n*sum([k*(n-k)//(gcd(n,k)**2) for k in range(1, n)]), end=', ')
    

Formula

a(n) = n*Sum_{k=1..n-1} k*(n-k)/gcd(n,k)^2.
a(n) = (1/6)*n*Sum_{d|n} d*(d*phi(d) - A023900(d)).
a(p^e) = (1/6)*p^(e+1)*(p^e-1)*(p^(e+1) + p^(2*e+1) + p^2 + 2*p + 1)/(p^2 + p + 1).
a(prime(n)) = A138421(n). - Michel Marcus, Jan 20 2021
Showing 1-10 of 10 results.