cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A129638 Number of meaningful differential operations of the k-th order on the space R^11.

Original entry on oeis.org

11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768, 15074, 29225, 56736, 110055, 213705, 414676, 805314, 1562977, 3035514, 5892257, 11443768, 22215753, 43146726, 83766396, 162686691, 315860810, 613439352, 1191054193, 2313133481
Offset: 11

Views

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also number of meaningful compositions of the k-th order of the differential operations and Gateaux directional derivative on the space R^10. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
Also (starting 6,11,...) the number of zig-zag paths from top to bottom of a rectangle of width 12, whose color is that of the top right corner. [Joseph Myers, Dec 23 2008]

Crossrefs

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=11; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 5, -4, -6, 3, 1}, {11, 21, 40, 77, 148, 286}, 30] (* Jean-François Alcover, Oct 10 2017 *)

Formula

a(k+6) = a(k+5) +5*a(k+4) -4*a(k+3) -6*a(k+2) +3*a(k+1) +a(k).
G.f.: -x^11*(6*x^5+21*x^4-24*x^3-36*x^2+10*x+11)/(x^6+3*x^5-6*x^4-4*x^3+5*x^2+x-1). [Colin Barker, Jul 08 2012]

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
More terms from Joseph Myers, Dec 23 2008

A164095 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 6.

Original entry on oeis.org

5, 6, 10, 12, 20, 24, 40, 48, 80, 96, 160, 192, 320, 384, 640, 768, 1280, 1536, 2560, 3072, 5120, 6144, 10240, 12288, 20480, 24576, 40960, 49152, 81920, 98304, 163840, 196608, 327680, 393216, 655360, 786432, 1310720, 1572864, 2621440, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 10 2009

Keywords

Comments

Interleaving of A020714 and A007283 without initial term 3.
Partial sums are in A164096.
Binomial transform is A048655 without initial 1, second binomial transform is A161941 without initial 2, third binomial transform is A164037, fourth binomial transform is A161731 without initial 1, fifth binomial transform is A164038, sixth binomial transform is A164110.

Crossrefs

Programs

  • Magma
    [ n le 2 select n+4 else 2*Self(n-2): n in [1..40] ];
  • Mathematica
    LinearRecurrence[{0,2},{5,6},50] (* or *) With[{nn=20},Riffle[NestList[ 2#&,5,nn],NestList[2#&,6,nn]]] (* Harvey P. Dale, Aug 15 2020 *)

Formula

a(n) = A070876(n)/3.
a(n) = (4-(-1)^n)*2^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(5+6*x)/(1-2*x^2).

A110288 a(n) = 19*2^n.

Original entry on oeis.org

19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 38912, 77824, 155648, 311296, 622592, 1245184, 2490368, 4980736, 9961472, 19922944, 39845888, 79691776, 159383552, 318767104, 637534208, 1275068416, 2550136832, 5100273664, 10200547328, 20401094656
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
19 times powers of 2. - Omar E. Pol, Dec 17 2008

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), this sequence (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

G.f.: 19/(1-2*x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*19. - Omar E. Pol, Dec 17 2008
E.g.f.: 19*exp(2*x). - G. C. Greubel, Jan 04 2023

Extensions

Edited by Omar E. Pol, Dec 16 2008

A163888 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 4.

Original entry on oeis.org

5, 4, 10, 8, 20, 16, 40, 32, 80, 64, 160, 128, 320, 256, 640, 512, 1280, 1024, 2560, 2048, 5120, 4096, 10240, 8192, 20480, 16384, 40960, 32768, 81920, 65536, 163840, 131072, 327680, 262144, 655360, 524288, 1310720, 1048576, 2621440, 2097152, 5242880
Offset: 1

Views

Author

Klaus Brockhaus, Aug 06 2009

Keywords

Comments

Interleaving of A020714 and A000079 without initial terms 1 and 2.
Binomial transform is A163607, second binomial transform is A163608, third binomial transform is A163609, fourth binomial transform is A163610, fifth binomial transform is A163611.

Crossrefs

Cf. A020714 (5*2^n), A000079 (powers of 2), A163607, A163608, A163609, A163610, A163611.

Programs

  • Magma
    [ n le 2 select 6-n else 2*Self(n-2): n in [1..41] ];
    
  • Mathematica
    Transpose[NestList[{Last[#],2First[#]}&,{5,4},40]] [[1]]  (* Harvey P. Dale, Mar 14 2011 *)
    LinearRecurrence[{0, 2},{5, 4},41] (* Ray Chandler, Aug 14 2015 *)
  • PARI
    x='x+O('x^50); vec(x*(5+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 07 2017

Formula

a(n) = (7 - 3*(-1)^n)*2^((2*n-5+(-1)^n)/4).
G.f.: x*(5+4*x)/(1-2*x^2).

A197652 Numbers that are congruent to 0 or 1 mod 10.

Original entry on oeis.org

0, 1, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 110, 111, 120, 121, 130, 131, 140, 141, 150, 151, 160, 161, 170, 171, 180, 181, 190, 191, 200, 201, 210, 211, 220, 221, 230, 231, 240, 241, 250, 251, 260, 261, 270, 271
Offset: 1

Views

Author

Philippe Deléham, Oct 16 2011

Keywords

Comments

From Wesley Ivan Hurt, Sep 26 2015: (Start)
Numbers with last digit 0 or 1.
Complement of (A260181 Union A262389). (End)
Numbers k such that floor(k/2) = 5*floor(k/10). - Bruno Berselli, Oct 05 2017

Crossrefs

Programs

Formula

a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1 and b(k) = 5*2^k = A020714(k) for k>0.
From Zak Seidov, Oct 20 2011: (Start)
a(n) = a(n-2) + 10.
a(n) = 5*n - 7 - 2*(-1)^n. (End)
From Vincenzo Librandi, Jul 11 2012: (Start)
G.f.: x^2*(1+9*x)/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 9 + (5*x - 7)*exp(x) - 2*exp(-x). - David Lovler, Sep 03 2022

A290002 Numbers k such that psi(phi(k)) = phi(psi(k)).

Original entry on oeis.org

1, 10, 18, 20, 36, 40, 54, 70, 72, 78, 80, 108, 110, 140, 144, 156, 160, 162, 174, 198, 216, 220, 222, 230, 234, 246, 280, 288, 294, 312, 320, 324, 348, 396, 414, 426, 432, 438, 440, 444, 450, 460, 468, 470, 486, 492, 534, 560, 576, 588, 594, 624, 640, 648, 666, 696, 702, 770, 792, 828, 846, 852
Offset: 1

Views

Author

Altug Alkan, Sep 03 2017

Keywords

Comments

Squarefree terms are 1, 10, 70, 78, 110, 174, 222, 230, 246, 426, 438, ...
Common terms of this sequence and A033632 are 1, 14406, 544500, 141118050, ...
From Robert Israel, Sep 03 2017: (Start)
Includes 2^i*3^j if i >= 1 and j >= 2, i.e., 3*A033845, and A020714(n) for n >= 1.
If an even number m is in the sequence, then so is 2*m.
Are there any odd terms other than 1? (End)
a(1) = 1 is the only odd term. LHS of equation allows for 1 and 3 but only for k <= 6. RHS allows for 1 and only for k = 1. - Torlach Rush, Jul 28 2023

Crossrefs

Programs

  • Maple
    psi:= proc(n)  n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
    select(psi @ numtheory:-phi = numtheory:-phi @ psi, [$1..1000]); # Robert Israel, Sep 03 2017
  • Mathematica
    f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; Select[Range[10^3], f[EulerPhi@ #] == EulerPhi[f@ #] &] (* Michael De Vlieger, Sep 03 2017 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = eulerphi(a001615(n))==a001615(eulerphi(n)); \\ after Charles R Greathouse IV at A001615

A327539 Starting from n: as long as the decimal representation starts with a positive even number, divide the largest such prefix by 2; a(n) corresponds to the final value.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 11, 11, 13, 3, 15, 13, 17, 7, 19, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 11, 11, 13, 11, 15, 13, 17, 3, 19, 15, 51, 13, 53, 17, 55, 7, 57, 19, 59, 15, 31, 31, 33, 1, 35, 33, 37, 17, 39, 35, 71
Offset: 0

Views

Author

Rémy Sigrist, Nov 29 2019

Keywords

Comments

For n > 0, as long as we have a number whose decimal representation is the concatenation of a positive even number, say u, and a possibly empty string of odd digits, say v, we replace this number with the concatenation of u/2 and v; eventually only odd digits remain.

Examples

			For n = 10000:
- 10000 gives 10000/2 = 5000,
- 5000 gives 5000/2 = 2500,
- 2500 gives 2500/2 = 1250,
- 1250 gives 125/2 = 625,
- 625 gives 62/2 followed by 5 = 315,
- 315 has only odd digits, so a(10000) = 315.
		

Crossrefs

See A329249, A329424 and A329428 for similar sequences.

Programs

Formula

a(n) <= n with equality iff n = 0 or n belongs to A014261.
a(2*n) = a(n).
a(10*k + v) = 10*a(k) + v for any k >= 0 and v in {1, 3, 5, 7, 9}.
a(n) = 1 iff n is a power of 2.
a(n) = 3 iff n belongs to A007283.
a(n) = 5 iff n belongs to A020714.
a(n) = 7 iff n belongs to A005009.
a(n) = 9 iff n belongs to A005010.
a(n) = a(n+1) iff n belongs to A215145.

A376192 Indices n where a run of primes begins in A375564.

Original entry on oeis.org

2, 8, 18, 40, 84, 162, 321, 649, 1286, 2550, 5096, 10188, 20406, 40883, 81932, 164190, 328490, 657509, 1316258, 2635513, 5276876, 10565366, 21155215, 42355195, 84797387, 169759097
Offset: 1

Views

Author

N. J. A. Sloane, Sep 26 2024

Keywords

Examples

			A375564 begins 1, 2, 3, 4, 6, 8, 10, 5, 7, 9, 12, ..., so the present sequence begins 2, 8, ...
		

Crossrefs

Formula

a(n) is roughly equal to 5*2^(n-1) (or A020714[n-1]).

Extensions

a(16)-a(19) from Scott R. Shannon, Sep 27 2024
a(20)-a(26) from Scott R. Shannon, Oct 02 2024

A288732 a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.

Original entry on oeis.org

2, 4, 6, 8, 10, 14, 18, 22, 26, 34, 42, 50, 58, 74, 90, 106, 122, 154, 186, 218, 250, 314, 378, 442, 506, 634, 762, 890, 1018, 1274, 1530, 1786, 2042, 2554, 3066, 3578, 4090, 5114, 6138, 7162, 8186, 10234, 12282, 14330, 16378, 20474, 24570, 28666, 32762
Offset: 0

Views

Author

Clark Kimberling, Jun 16 2017

Keywords

Comments

Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iterate of the mapping 00->1000, 10->01, starting with 00; see A288729.
From Michel Dekking, Mar 25 2018: (Start)
Note that a(n) - a(n-1) = 2*[a(n-4) - a(n-5)] for n>4.
It follows that this sequence is a union of four simple sequences:
a(4k-4) = 4*2^k - 6 = A131130(k) for k = 1,2,3,...
a(4k-3) = 5*2^k - 6 = A020714(k) - 6 for k = 1,2,3...
a(4k-2) = 6*2^k - 6 = A007283(k+1) - 6 for k = 1,2,3, ...
a(4k-1) = 7*2^k - 6 = A048489(k) for k = 1,2,3...
(End)

Crossrefs

Cf. A288729.

Programs

  • GAP
    a:=[2,4,6,8,10];; for n in [6..45] do a[n]:=a[n-1]+2*a[n-4]-2*a[n-5]; od; a; # Muniru A Asiru, Mar 22 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5),
    a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1, 0, 0, 2, -2}, {2, 4, 8, 8, 10}, 40]
  • PARI
    x='x+O('x^99); Vec(2*(1+x+x^2+x^3-x^4)/(1-x-2*x^4+2*x^5)) \\ Altug Alkan, Mar 22 2018

Formula

a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) for n >= 5, where a(0) = 2, a(1) = 4, a(2) = 6, a(3) = 8, a(4) = 10.
G.f.: -((2*(-1 - x - x^2 - x^3 + x^4))/(1 - x - 2*x^4 + 2*x^5)).

Extensions

a(41)-a(49) from Muniru A Asiru, Mar 22 2018

A084640 Generalized Jacobsthal numbers.

Original entry on oeis.org

0, 1, 5, 11, 25, 51, 105, 211, 425, 851, 1705, 3411, 6825, 13651, 27305, 54611, 109225, 218451, 436905, 873811, 1747625, 3495251, 6990505, 13981011, 27962025, 55924051, 111848105, 223696211, 447392425, 894784851, 1789569705, 3579139411
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

This is the sequence A(0,1;1,2;4) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

Crossrefs

Programs

  • Haskell
    a084640 n = a084640_list !! n
    a084640_list = 0 : 1 : (map (+ 4) $
       zipWith (+) (map (* 2) a084640_list) (tail a084640_list))
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [5*2^n/3+(-1)^n/3-2: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,1,5},40] (* Harvey P. Dale, Oct 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+3*x)/((1-x^2)*(1-2*x))) \\ G. C. Greubel, Sep 26 2017

Formula

G.f.: x*(1+3*x)/((1-x^2)*(1-2*x)).
a(n) = a(n-1) + 2a(n-2) + 4, a(0)=0, a(1)=1.
a(n) = (5*2^n + (-1)^n - 6)/3.
a(n) = A001045(n+2) + 4*A000975(n-3).
a(n+1) - 2*a(n) = period 2: repeat 1, 3. - Paul Curtz, Apr 03 2008
Contribution from Paul Curtz, Dec 10 2009: (Start)
a(n+2) - a(n) = A020714(n).
Le the array D(n,k) of the first differences be defined via D(0,k) = a(k); D(n+1,k) = D(n,k+1)-D(n,k).
Then D(n,n) = 4*A131577(n); D(1,k) = A084214(k+1); D(2,k) = A115102(k-1) for k>0; D(3,k) = (-1)^(k+1)*A083581(k). (End)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0)=0, a(1)=1, a(2)=5. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
Previous Showing 31-40 of 75 results. Next