cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005

Examples

			Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
  1;
  0,    1;
  0,   -1,    1;
  0,    2,   -2,   1;
  0,   -5,    5,  -3,    1;
  0,   14,  -14,   9,   -4,   1;
  0,  -42,   42, -28,   14,  -5,  1;
  0,  132, -132,  90,  -48,  20, -6,  1;
  0, -429,  429, -297, 165, -75, 27, -7, 1;
Production matrix is
  0,  1,
  0, -1,  1,
  0,  1, -1,  1,
  0, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Cf. A106566 (unsigned version), A059365
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]];  Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    {T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017

Formula

T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005

A106344 Triangle read by rows: T(n,k) = binomial(k,n-k) mod 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 29 2005

Keywords

Comments

A skew version of Sierpinski’s triangle A047999. - Johannes W. Meijer, Jun 05 2011
Row sums are A002487(n+1). Diagonal sums are A106345. Inverse is A106346.
Triangle formed by reading T triangle mod 2 with T := A026729, A062110, A084938, A099093, A106344, A109466, A110517, A112883, A130167. - Philippe Deléham, Dec 18 2008

Examples

			Triangle begins
  1;
  0, 1;
  0, 1, 1;
  0, 0, 0, 1;
  0, 0, 1, 1, 1;
  0, 0, 0, 1, 0, 1;
		

Crossrefs

Cf. A106345 (diagonal sums), A106346 (inverse).

Programs

  • GAP
    Flat(List([0..15], n-> List([0..n], k-> (Binomial(k,n-k) mod 2) ))); # G. C. Greubel, Feb 07 2020
  • Magma
    [ Binomial(k,n-k) mod 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    seq(seq(`mod`(binomial(k, n-k), 2), k = 0..n), n = 0..15); # G. C. Greubel, Feb 07 2020
  • Mathematica
    Table[Mod[Binomial[k, n-k], 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 18 2017 *)
  • PARI
    T(n,k) = binomial(k,n-k)%2;
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 07 2020
    
  • Sage
    [[ mod(binomial(k,n-k), 2) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Feb 07 2020
    

A111146 Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2005

Keywords

Comments

Let R(m,n,k), 0<=k<=n, the Riordan array (1, x*g(x)) where g(x) is g.f. of the m-fold factorials . Then Sum_{k, 0<=k<=n} = R(m,n,k) = Sum_{k, 0<=k<=n} T(n,k)*m^(n-k).
For m = -1, R(-1,n,k) is A026729(n,k).
For m = 0, R(0,n,k) is A097805(n,k).
For m = 1, R(1,n,k) is A084938(n,k).
For m = 2, R(2,n,k) is A111106(n,k).

Examples

			Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
		

Crossrefs

Cf. m-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542.
Cf. A113326, A113327 (y=2), A113328 (y=3), A113329 (y=4), A113330 (y=5), A113331 (y=6).

Programs

  • Mathematica
    T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)

Formula

Sum_{k, 0<=k<=n} (-1)^(n-k)*T(n, k) = A000045(n+1), Fibonacci numbers.
Sum_{k, 0<=k<=n} T(n, k) = A051295(n).
Sum_{k, 0<=k<=n} 2^(n-k)*T(n, k) = A112934(n).
T(0, 0) = 1, T(n, n) = 2^(n-1).
G.f.: A(x, y) = 1/(1 - x*y*Sum_{j>=0} (y-1+j)!/(y-1)!*x^j ). - Paul D. Hanna, Oct 26 2005

A052553 Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by upward antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 0, 0, 1, 5, 6, 1, 0, 0, 0, 1, 6, 10, 4, 0, 0, 0, 0, 1, 7, 15, 10, 1, 0, 0, 0, 0, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, 1, 10, 36, 56, 35, 6, 0, 0, 0, 0, 0, 0, 1, 11, 45, 84, 70, 21, 1, 0, 0, 0, 0, 0, 0, 1, 12, 55
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2000

Keywords

Comments

Another version of Pascal's triangle A007318.
As a triangle read by rows, it is (1,0,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938 and it is the Riordan array (1/(1-x), x^2/(1-x)). The row sums of this triangle are F(n+1) = A000045(n+1). - Philippe Deléham, Dec 11 2011
As a triangle, binomial(n-k, k) is also the number of ways to add k pierced circles to a path graph P_n so that no two circles share a vertex (see Lemma 3.1 at page 5 in Owad and Tsvietkova). - Stefano Spezia, May 18 2022
For all n >= 0, k >= 0, the k-th homology group of the n-torus H_k(T^n) is the free abelian group of rank T(n,k) = binomial(n,k). See the Math Stack Exchange link below. - Jianing Song, Mar 13 2023

Examples

			Array begins:
  1, 0,  0,  0, 0, 0, ...
  1, 1,  0,  0, 0, 0, ...
  1, 2,  1,  0, 0, 0, ...
  1, 3,  3,  1, 0, 0, ...
  1, 4,  6,  4, 1, 0, ...
  1, 5, 10, 10, 5, 1, ...
As a triangle, this begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  0, 0;
  1, 3,  1, 0, 0;
  1, 4,  3, 0, 0, 0;
  1, 5,  6, 1, 0, 0, 0;
  1, 6, 10, 4, 0, 0, 0, 0;
  ...
		

Crossrefs

The official entry for Pascal's triangle is A007318. See also A026729 (the same array read by downward antidiagonals).
As a triangle without zeros: A011973.

Programs

  • Magma
    /* As triangle */ [[Binomial(n-k,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 08 2017
  • Maple
    with(combinat): for s from 0 to 20 do for n from s to 0 by -1 do printf(`%d,`, binomial(n, s-n)) od:od: # James Sellers, Mar 17 2000
  • Mathematica
    Flatten[ Table[ Binomial[n-k , k], {n, 0, 13}, {k, 0, n}]]  (* Jean-François Alcover, Dec 05 2012 *)
  • PARI
    T(n,k) = binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

As a triangle: T(n,k) = A026729(n,n-k).
G.f. of the triangular version: 1/(1-x-x^2*y). - R. J. Mathar, Aug 11 2015

A005716 Coefficient of x^8 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314, 52624, 93093, 157950, 258570, 410346, 633726, 955434, 1409895, 2040885, 2903428, 4065963, 5612805, 7646925, 10293075, 13701285, 18050760, 23554206, 30462615, 39070540, 49721892, 62816292, 78816012, 98253540
Offset: 4

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 15, 90, 357, 1107, 2907, 6765, 14355, 28314]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
    
  • Magma
    /* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[9]: n in [4..32] ]; // Bruno Berselli, Jun 17 2012
  • Maple
    A005716:=-(6*z-9*z**2+3*z**3+1)/(z-1)**9; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A005716 := n -> GegenbauerC(`if`(8A005716(n)), n=4..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(1+6*x-9*x^2+3*x^3)/(1-x)^9,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = binomial(n+1, 5)*(n^2+23*n-84)*(n+10)/336, n >= 4.
G.f.: (x^4)*(1+6*x-9*x^2+3*x^3)/(1-x)^9. (Numerator polynomial is N3(8, x) from A063420).
a(n) = A027907(n, 8), n >= 4 (ninth column of trinomial coefficients).
a(n) = A111808(n,8) for n>7. - Reinhard Zumkeller, Aug 17 2005
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,4) + 10*binomial(n,5) + 15*binomial(n,6) + 7*binomial(n,7) + binomial(n,8) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 8 if 8Peter Luschny, May 10 2016

Extensions

More terms from Vladeta Jovovic, Oct 02 2000

A127782 G.f. satisfies A(x) = 1 + x*A(x+x^2).

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 114, 438, 1845, 8458, 41823, 221539, 1250269, 7481758, 47278652, 314374316, 2192798077, 16000160519, 121831654450, 965946444587, 7958739329386, 68023023892680, 602115897105136, 5511499584735858
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2007

Keywords

Comments

Equals eigensequence of triangle A026729. - Gary W. Adamson, Jan 16 2009
In Barry[2011] on page 9 is Example 12 where the first column of the eigentriangle of the skew binomial matrix is this sequence. - Michael Somos, Oct 03 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 33*x^6 + 114*x^7 + ... - _Michael Somos_, Oct 03 2024
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*binomial(n-i, i-1), i=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nmax = 20; b = ConstantArray[0, nmax]; b[[1]] = 1; Do[b[[n+2]] = Sum[Binomial[n-k, k]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax-2}]; b (* Vaclav Kotesovec, Mar 12 2014 *)
    a[ n_] := If[n<1, Boole[n==0], a[n] = Sum[Binomial[k, n-1-k] * a[k], {k, 0, n-1}]]; (* Michael Somos, Oct 03 2024 *)
  • PARI
    a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+x*subst(A,x,x+x^2)); polcoeff(A,n)
    
  • PARI
    a(n)=if(n==0, 1, sum(k=0, (n-1)\2,binomial(n-1-k,k)*a(n-1-k))); \\ corrected by Seiichi Manyama, Feb 25 2023
    
  • PARI
    {a(n) = my(A = 1 + O(x)); for(k=1, n, A = 1 + x*subst(A, x, x+x^2)); polcoeff(A, n)}; /* Michael Somos, Oct 03 2024 */

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k,k) * a(n-1-k) for n>0 with a(0)=1. [corrected by Seiichi Manyama, Feb 25 2023]
a(n) ~ c * Bell(n) * LambertW(n) / (n*exp(LambertW(n)^2/2)), where c = 1.93210869..., or a(n) ~ c * exp(n/LambertW(n) - LambertW(n)^2/2 - 1 - n) * n^(n-1) / (LambertW(n)^(n-1) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Mar 12 2014
a(n) = Sum_{k=0..n-1} binomial(k, n-k-1) * a(k) for n>0 with a(0)=1. (from Barry[2011]) - Michael Somos, Oct 03 2024

A005714 Coefficient of x^6 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

1, 10, 45, 141, 357, 784, 1554, 2850, 4917, 8074, 12727, 19383, 28665, 41328, 58276, 80580, 109497, 146490, 193249, 251713, 324093, 412896, 520950, 651430, 807885, 994266, 1214955, 1474795, 1779121, 2133792, 2545224, 3020424, 3567025, 4193322, 4908309, 5721717
Offset: 3

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 10, 45, 141, 357, 784, 1554]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
    
  • Magma
    /* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[7]: n in [3..35] ]; // Bruno Berselli, Jun 17 2012
  • Maple
    A005714:=-(1+3*z-4*z**2+z**3)/(z-1)**7; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A005714 := n -> GegenbauerC(`if`(6A005714(n)), n=3..20); # Peter Luschny, May 10 2016
  • Mathematica
    a[n_] := Coefficient[(1 + x + x^2)^n, x, 6]; Table[a[n], {n, 3, 35}]
    CoefficientList[Series[(1+3*x-4*x^2+x^3)/(1-x)^7,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = binomial(n, 3)*(n^3+18*n^2+17*n-120) /120.
G.f.: (x^3)*(1+3*x-4*x^2+x^3)/(1-x)^7. (Numerator polynomial is N3(6, x) from A063420).
a(n) = A027907(n, 6), n >= 3 (seventh column of trinomial coefficients).
a(n) = A111808(n,6) for n>5. - Reinhard Zumkeller, Aug 17 2005
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). Vincenzo Librandi, Jun 16 2012
a(n) = binomial(n,3) + 6*binomial(n,4) + 5*binomial(n,5) + binomial(n,6) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 6 if 6Peter Luschny, May 10 2016
E.g.f.: exp(x)*x^3*(120 + 180*x + 30*x^2 + x^3)/720. - Stefano Spezia, Mar 28 2023

Extensions

More terms from Vladeta Jovovic, Oct 02 2000

A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the third array in the sequence of arrays A026729, A071675 considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213743. For example, s_1(n)=binomial(n,1)=n is the first column of A213743 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213743 for n>1, etc. In particular (see comment in A213743), in cases k=6,7,8,9 s_k(n) is A064056(n+2), A064057(n+2), A064058(n+2), A000575(n+3) respectively.
Riordan array (1,x+x^2+x^3+x^4). A186332 with additional 0 column. - Ralf Stephan, Dec 31 2013

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....0....4....6....4....1
.6..|..0....0....3...10...10....5....1
.7..|..0....0....2...12...20...15....6....1
.8..|..0....0....1...12...31...35...21....7....1
.9..|..0....0....0...10...40...65...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A030528 (parts <=2), A078803 (parts <=3), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    pts := 4; # A213887
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A213888 Triangle of coefficients of representations of columns of A213744 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 0, 5, 10, 10, 5, 1, 0, 0, 4, 15, 20, 15, 6, 1, 0, 0, 3, 18, 35, 35, 21, 7, 1, 0, 0, 2, 19, 52, 70, 56, 28, 8, 1, 0, 0, 1, 18, 68, 121, 126, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the fourth array in the sequence of arrays A026729, A071675, A213887,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213744. For example, s_1(n)=binomial(n,1)=n is the first column of A213744 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213744 for n>1, etc. In particular (see comment inA213744), in cases k=7,8,9 s_k(n) is A063262(n+2), A063263(n+2), A063264(n+2) respectively.

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....0....5...10...10....5....1
.7..|..0....0....4...15...20...15....6....1
.8..|..0....0....3...18...35...35...21....7....1
.9..|..0....0....2...19...52...70...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A213887, A030528 (parts <=2), A078803 (parts <=3), A213887 (parts <=4).

Programs

  • Maple
    pts := 5; # A213888
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A005715 Coefficient of x^7 in expansion of (1+x+x^2)^n.

Original entry on oeis.org

4, 30, 126, 393, 1016, 2304, 4740, 9042, 16236, 27742, 45474, 71955, 110448, 165104, 241128, 344964, 484500, 669294, 910822, 1222749, 1621224, 2125200, 2756780, 3541590, 4509180, 5693454, 7133130, 8872231, 10960608, 13454496
Offset: 4

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[4, 30, 126, 393, 1016, 2304, 4740, 9042]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Jun 16 2012
    
  • Magma
    /* By definition: */ P:=PolynomialRing(Integers()); [ Coefficients((1+x+x^2)^n)[8]: n in [4..33] ]; // Bruno Berselli, Jun 17 2012
  • Maple
    A005715:=(z-2)*(z**2-2)/(z-1)**8; # Conjectured by Simon Plouffe in his 1992 dissertation.
    A005715 := n -> GegenbauerC(`if`(7A005715(n)), n=4..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(x-2)*(x^2-2)/(1-x)^8,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)

Formula

a(n) = binomial(n, 4)*(n^3+27*n^2+116*n-120)/210, n >= 4.
G.f.: (x^4)*(x-2)*(x^2-2)/(1-x)^8. (Numerator polynomial is N3(7, x) from A063420).
a(n) = A027907(n, 7), n >= 4 (eighth column of trinomial coefficients).
a(n) = A111808(n,7) for n>6. - Reinhard Zumkeller, Aug 17 2005
a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8). Vincenzo Librandi, Jun 16 2012
a(n) = 4*binomial(n,4) + 10*binomial(n,5) + 6*binomial(n,6) + binomial(n,7) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 7 if 7Peter Luschny, May 10 2016

Extensions

More terms from Vladeta Jovovic, Oct 02 2000
Previous Showing 11-20 of 35 results. Next