cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A039598 Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan's triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 14, 14, 6, 1, 42, 48, 27, 8, 1, 132, 165, 110, 44, 10, 1, 429, 572, 429, 208, 65, 12, 1, 1430, 2002, 1638, 910, 350, 90, 14, 1, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of leaves at level k+1 in all ordered trees with n+1 edges. - Emeric Deutsch, Jan 15 2005
Riordan array ((1-2x-sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x)). Inverse array is A053122. - Paul Barry, Mar 17 2005
T(n,k) is the number of walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in the upper half-plane and ending at height k (see the R. K. Guy reference, p. 5). Example: T(3,2)=6 because we have ENN, WNN, NEN, NWN, NNE and NNW. - Emeric Deutsch, Apr 15 2005
Triangle T(n,k), 0<=k<=n, read by rows given by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 30 2007
Number of (2n+1)-step walks from (0,0) to (2n+1,2k+1) and consisting of steps u=(1,1) and d=(1,-1) in which the path stays in the nonnegative quadrant. Examples: T(2,0)=5 because we have uuudd, uudud, uuddu, uduud, ududu; T(2,1)=4 because we have uuuud, uuudu, uuduu, uduuu; T(2,2)=1 because we have uuuuu. - Philippe Deléham, Apr 16 2007, Apr 18 2007
Triangle read by rows: T(n,k)=number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and two types of steps H=(1,0); example: T(3,1)=14 because we have UDU, UUD, 4 HHU paths, 4 HUH paths and 4 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
With offset [1,1] this is the (ordinary) convolution triangle a(n,m) with o.g.f. of column m given by (c(x)-1)^m, where c(x) is the o.g.f. for Catalan numbers A000108. See the Riordan comment by Paul Barry.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
T(n,k)/2^(2n+1) = coefficients of the maximally flat lowpass digital differentiator of the order N=2n+3. - Pavel Holoborodko (pavel(AT)holoborodko.com), Dec 19 2008
The signed triangle S(n,k) := (-1)^(n-k)*T(n,k) provides the transformation matrix between f(n,l) := L(2*l)*5^n*F(2*l)^(2*n+1) (F=Fibonacci numbers A000045, L=Lucas numbers A000032) and F(4*l*(k+1)), k = 0, ..., n, for each l>=0: f(n,l) = Sum_{k=0..n} S(n,k)*F(4*l*(k+1)), n>=0, l>=0. Proof: the o.g.f. of the l.h.s., G(l;x) := Sum_{n>=0} f(n,l)*x^n = F(4*l)/(1 - 5*F(2*l)^2*x) is shown to match the o.g.f. of the r.h.s.: after an interchange of the n- and k-summation, the Riordan property of S = (C(x)/x,C(x)) (compare with the above comments by Paul Barry), with C(x) := 1 - c(-x), with the o.g.f. c(x) of A000108 (Catalan numbers), is used, to obtain, after an index shift, first Sum_{k>=0} F(4*l*(k))*GS(k;x), with the o.g.f of column k of triangle S which is GS(k;x) := Sum_{n>=k} S(n,k)*x^n = C(x)^(k+1)/x. The result is GF(l;C(x))/x with the o.g.f. GF(l,x) := Sum_{k>=0} F(4*l*k)*x^k = x*F(4*l)/(1-L(4*l)*x+x^2) (see a comment on A049670, and A028412). If one uses then the identity L(4*n) - 5*F(2*n)^2 = 2 (in Koshy's book [reference under A065563] this is No. 15, p. 88, attributed to Lucas, 1876), the proof that one recovers the o.g.f. of the l.h.s. from above boils down to a trivial identity on the Catalan o.g.f., namely 1/c^2(-x) = 1 + 2*x - (x*c(-x))^2. - Wolfdieter Lang, Aug 27 2012
O.g.f. for row polynomials R(x) := Sum_{k=0..n} a(n,k)*x^k:
((1+x) - C(z))/(x - (1+x)^2*z) with C the o.g.f. of A000108 (Catalan numbers). From Riordan ((C(x)-1)/x,C(x)-1), compare with a Paul Barry comment above. This coincides with the o.g.f. given by Emeric Deutsch in the formula section. - Wolfdieter Lang, Nov 13 2012
The A-sequence for this Riordan triangle is [1,2,1] and the Z-sequence is [2,1]. See a W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 13 2012
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n+1, 2*k+1). T(n, k) appears in the formula for the (2*n+1)-th power of the algebraic number rho(N) := 2*cos(Pi/N) = R(N, 2) in terms of the even-indexed diagonal/side length ratios R(N, 2*(k+1)) = S(2*k+1, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310): rho(N)^(2*n+1) = Sum_{k=0..n} T(n, k)*R(N, 2*(k+1)), n >= 0, identical in N >= 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears. For the even powers of rho(n) see A039599. (End)
The tridiagonal Toeplitz production matrix P in the Example section corresponds to the unsigned Cartan matrix for the simple Lie algebra A_n as n tends to infinity (cf. Damianou ref. in A053122). - Tom Copeland, Dec 11 2015 (revised Dec 28 2015)
T(n,k) is the number of pairs of non-intersecting walks of n steps, each in direction N or E, starting at the origin, and such that the end points of the two paths are separated by a horizontal distance of k. See Shapiro 1976. - Peter Bala, Apr 12 2017
Also the convolution triangle of the Catalan numbers A000108. - Peter Luschny, Oct 07 2022

Examples

			Triangle T(n,k) starts:
n\k     0      1      2      3      4     5    6    7   8  9 10
0:      1
1:      2      1
2:      5      4      1
3:     14     14      6      1
4:     42     48     27      8      1
5:    132    165    110     44     10     1
6:    429    572    429    208     65    12    1
7:   1430   2002   1638    910    350    90   14    1
8:   4862   7072   6188   3808   1700   544  119   16   1
9:  16796  25194  23256  15504   7752  2907  798  152  18  1
10: 58786  90440  87210  62016  33915 14364 4655 1120 189 20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012.
Production matrix begins:
2, 1
1, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 0, 0, 1, 2, 1
0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 0, 1, 2, 1
- _Philippe Deléham_, Nov 07 2011
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: T(5,1) = 165 = 1*42 + 2*48 +1*27. The Riordan A-sequence is [1,2,1].
Recurrence from Riordan Z-sequence [2,1]: T(5,0) = 132 = 2*42 + 1*48. (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
  Example for rho(N) = 2*cos(Pi/N) powers:
  n=2: rho(N)^5 = 5*R(N, 2) + 4*R(N, 4) + 1*R(N, 6) = 5*S(1, rho(N)) + 4*S(3, rho(N)) + 1*S(5, rho(N)), identical in N >= 1. For N=5 (the pentagon with only one distinct diagonal) the degree delta(5) = 2, hence R(5, 4) and R(5, 6) can be reduced, namely to R(5, 1) = 1 and R(5, 6) = -R(5,1) = -1, respectively. Thus rho(5)^5 = 5*R(N, 2) + 4*1  + 1*(-1) = 3 + 5*R(N, 2) = 3 + 5*rho(5), with the golden section rho(5). (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Mirror image of A050166. Row sums are A001700.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n,n-k) - Binomial(2*n,n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2015
    
  • Maple
    T:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); # N. J. A. Sloane, Aug 26 2013
    # Uses function PMatrix from A357368. Adds row and column above and to the left.
    PMatrix(10, n -> binomial(2*n, n) / (n + 1)); # Peter Luschny, Oct 07 2022
  • Mathematica
    Flatten[Table[Binomial[2n, n-k] - Binomial[2n, n-k-2], {n,0,9}, {k,0,n}]] (* Jean-François Alcover, May 03 2011 *)
  • PARI
    T(n,k)=binomial(2*n,n-k) - binomial(2*n,n-k-2) \\ Charles R Greathouse IV, Nov 07 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle.
    def A039598_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 1
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
            if b : print([D[z] for z in (1..h-1) ])
    A039598_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

Row n: C(2n, n-k) - C(2n, n-k-2).
a(n, k) = C(2n+1, n-k)*2*(k+1)/(n+k+2) = A050166(n, n-k) = a(n-1, k-1) + 2*a(n-1, k)+ a (n-1, k+1) [with a(0, 0) = 1 and a(n, k) = 0 if n<0 or nHenry Bottomley, Sep 24 2001
From Philippe Deléham, Feb 14 2004: (Start)
T(n, 0) = A000108(n+1), T(n, k) = 0 if n0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+2) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
Sum_{k>=0} T(m, k)*T(n, k) = A000108(m+n+1). (End)
T(n, k) = A009766(n+k+1, n-k) = A033184(n+k+2, 2k+2). - Philippe Deléham, Feb 14 2004
Sum_{j>=0} T(k, j)*A039599(n-k, j) = A028364(n, k). - Philippe Deléham, Mar 04 2004
Antidiagonal Sum_{k=0..n} T(n-k, k) = A000957(n+3). - Gerald McGarvey, Jun 05 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super- and subdiagonals and [2,2,2,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
G.f.: G(t,x) = C^2/(1-txC^2), where C = (1-sqrt(1-4x))/(2x) is the Catalan function. From here G(-1,x)=C, i.e., the alternating row sums are the Catalan numbers (A000108). - Emeric Deutsch, Jan 20 2007
Sum_{k=0..n} T(n,k)*x^k = A000957(n+1), A000108(n), A000108(n+1), A001700(n), A049027(n+1), A076025(n+1), A076026(n+1) for x=-2,-1,0,1,2,3,4 respectively (see square array in A067345). - Philippe Deléham, Mar 21 2007, Nov 04 2011
Sum_{k=0..n} T(n,k)*(k+1) = 4^n. - Philippe Deléham, Mar 30 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A035324(n,k), A035324 with offset 0 (0 <= k <= n). - Philippe Deléham, Mar 30 2007
T(n,k) = A053121(2*n+1,2*k+1). - Philippe Deléham, Apr 16 2007, Apr 18 2007
T(n,k) = A039599(n,k) + A039599(n,k+1). - Philippe Deléham, Sep 11 2007
Sum_{k=0..n+1} T(n+1,k)*k^2 = A029760(n). - Philippe Deléham, Dec 16 2007
Sum_{k=0..n} T(n,k)*A059841(k) = A000984(n). - Philippe Deléham, Nov 12 2008
G.f.: 1/(1-xy-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A194727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011
From Peter Bala, Dec 21 2014: (Start)
This triangle factorizes in the Riordan group as ( C(x), x*C(x) ) * ( 1/(1 - x), x/(1 - x) ) = A033184 * A007318, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
Let U denote the lower unit triangular array with 1's on or below the main diagonal and zeros elsewhere. For k = 0,1,2,... define U(k) to be the lower unit triangular block array
/I_k 0\
\ 0 U/ having the k X k identity matrix I_k as the upper left block; in particular, U(0) = U. Then this array equals the bi-infinite product (...*U(2)*U(1)*U(0))*(U(0)*U(1)*U(2)*...). (End)
From Peter Bala, Jul 21 2015: (Start)
O.g.f. G(x,t) = (1/x) * series reversion of ( x/f(x,t) ), where f(x,t) = ( 1 + (1 + t)*x )^2/( 1 + t*x ).
1 + x*d/dx(G(x,t))/G(x,t) = 1 + (2 + t)*x + (6 + 4*t + t^2)*x^2 + ... is the o.g.f for A094527. (End)
Conjecture: Sum_{k=0..n} T(n,k)/(k+1)^2 = H(n+1)*A000108(n)*(2*n+1)/(n+1), where H(n+1) = Sum_{k=0..n} 1/(k+1). - Werner Schulte, Jul 23 2015
From Werner Schulte, Jul 25 2015: (Start)
Sum_{k=0..n} T(n,k)*(k+1)^2 = (2*n+1)*binomial(2*n,n). (A002457)
Sum_{k=0..n} T(n,k)*(k+1)^3 = 4^n*(3*n+2)/2.
Sum_{k=0..n} T(n,k)*(k+1)^4 = (2*n+1)^2*binomial(2*n,n).
Sum_{k=0..n} T(n,k)*(k+1)^5 = 4^n*(15*n^2+15*n+4)/4. (End)
The o.g.f. G(x,t) is such that G(x,t+1) is the o.g.f. for A035324, but with an offset of 0, and G(x,t-1) is the o.g.f. for A033184, again with an offset of 0. - Peter Bala, Sep 20 2015
Denote this lower triangular array by L; then L * transpose(L) is the Cholesky factorization of the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )A172417%20read%20as%20a%20square%20array.%20See%20Chamberland,%20p.%201669.%20-%20_Peter%20Bala">i,j >= 1 = A172417 read as a square array. See Chamberland, p. 1669. - _Peter Bala, Oct 15 2023

Extensions

Typo in one entry corrected by Philippe Deléham, Dec 16 2007

A008315 Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 3,  2;
  1, 4,  5;
  1, 5,  9,  5;
  1, 6, 14, 14;
  1, 7, 20, 28, 14;
  ...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - _Geoffrey Critzer_, Jul 31 2009
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.

Crossrefs

T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].

Programs

  • Haskell
    a008315 n k = a008315_tabf !! n !! k
    a008315_row n = a008315_tabf !! n
    a008315_tabf = map reverse a008313_tabf
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, n-2*k):
    seq(seq(T(n, k), k=0..n/2), n=0..16);  # Alois P. Heinz, Oct 14 2022
  • Mathematica
    Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
  • PARI
    {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
    

Formula

T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011

Extensions

Expanded description from Clark Kimberling, Jun 15 1997

A100100 Triangle T(n,k) = binomial(2*n-k-1, n-k) read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 6, 3, 1, 35, 20, 10, 4, 1, 126, 70, 35, 15, 5, 1, 462, 252, 126, 56, 21, 6, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1, 24310, 12870, 6435, 3003, 1287, 495, 165, 45, 9, 1, 92378, 48620, 24310, 11440, 5005, 2002
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Comments

Sometimes called a Catalan triangle, although there are many other triangles that carry that name - see A009766, A008315, A028364, A033184, A053121, A059365, A062103.
Number of nodes of outdegree k in all ordered trees with n edges. Equivalently, number of ascents of length k in all Dyck paths of semilength n. Example: T(3,2) = 3 because the Dyck paths of semilength 3 are UDUDUD, UD(UU)DD, (UU)DDUD, (UU)DUDD and UUUDDD, where U = (1,1), D = (1,-1), the ascents of length 2 being shown between parentheses. - Emeric Deutsch, Nov 19 2006
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A088218 and g(x) is the g.f. of A000108. - Philippe Deléham, Jan 23 2010
T(n,k) is the number of nonnegative paths of upsteps U = (1,1) and downsteps D = (1,-1) of length 2*n with k returns to ground level, the horizontal line through the initial vertex. Example: T(2,1) = 2 counts UDUU, UUDD. Also, T(n,k) = number of these paths whose last descent has length k, that is, k downsteps follow the last upstep. Example: T(2,1) = 2 counts UUUD, UDUD. - David Callan, Nov 21 2011
Belongs to the hitting-time subgroup of the Riordan group. Multiplying this triangle by the square Pascal matrix gives A092392 read as a square array. See the example below. - Peter Bala, Nov 03 2015

Examples

			From _Paul Barry_, Mar 15 2010: (Start)
Triangle begins in row n=0 with columns 0<=k<=n as:
    1;
    1,   1;
    3,   2,   1;
   10,   6,   3,  1;
   35,  20,  10,  4,  1;
  126,  70,  35, 15,  5, 1;
  462, 252, 126, 56, 21, 6, 1;
Production matrix begins
  1, 1;
  2, 1, 1;
  3, 1, 1, 1;
  4, 1, 1, 1, 1;
  5, 1, 1, 1, 1, 1;
  6, 1, 1, 1, 1, 1, 1;
  7, 1, 1, 1, 1, 1, 1, 1;
(End)
A092392 as a square array = A100100 * square Pascal matrix:
/1   1  1  1 ...\   / 1          \/1 1  1  1 ...\
|2   3  4  5 ...|   | 1 1        ||1 2  3  4 ...|
|6  10 15 21 ...| = | 3 2 1      ||1 3  6 10 ...|
|20 35 56 84 ...|   |10 6 3 1    ||1 4 10 20 ...|
|70 ...         |   |35 ...      ||1 ...        |
- _Peter Bala_, Nov 03 2015
		

Crossrefs

Row sums are A000984. Equivalent to A092392, to which A088218 has been added as a first column. Columns include A088218, A000984, A001700, A001791, A002054, A002694. Diagonal sums are A100217. Matrix inverse is A100218.
Cf. A059481 (mirrored). Cf. A033184, A094527, A113955.

Programs

  • Haskell
    a100100 n k = a100100_tabl !! n !! n
    a100100_row n = a100100_tabl !! n
    a100100_tabl = [1] : f a092392_tabl where
       f (us : wss'@(vs : wss)) = (vs !! 1 : us) : f wss'
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    /* As triangle */ [[Binomial(2*n - k - 1, n - k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 21 2018
  • Maple
    A100100 := proc(n,k)
        binomial(2*n-k-1,n-1) ;
    end proc:
    seq(seq(A100100(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
  • Mathematica
    Flatten[Table[Binomial[2 n - k - 1, n - k], {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Nov 21 2018 *)
  • PARI
    T(n,k)=binomial(2*n-k-1,n-k) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

From Peter Bala, Sep 06 2015: (Start)
Matrix product A094527 * P^(-1) = A113955 * P^(-2), where P denotes Pascal's triangle A007318.
Essentially, the logarithmic derivative of A033184. (End)
Let column(k) = [T(n, k), n >= k], then the generating function for column(k) is (2/(sqrt(1-4*x)+1))^(k-1)/sqrt(1-4*x). - Peter Luschny, Mar 19 2021
O.g.f. row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, i.e. o.g.f. of the triangle, G(z,x) = 1/((2 - c(z))*(1 - x*z*c(z))), with c the o.g.f. of A000108 (Catalan). See the Riordan coomment by Philippe Deléham above. - Wolfdieter Lang, Apr 06 2021

A067298 Generalized Catalan triangle, based on C(2,2; n) = A064340(n).

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 28, 32, 36, 64, 256, 284, 300, 328, 584, 2704, 2960, 3072, 3184, 3440, 6144, 31168, 33872, 34896, 35680, 36704, 39408, 70576, 380608, 411776, 422592, 429760, 436928, 447744, 478912, 859520, 4840960, 5221568, 5346240, 5421952, 5487488, 5563200, 5687872, 6068480, 10909440
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

For corresponding Catalan triangle with C(1,1; n) = A000108(n) see A028364.
Identity for each row n>=1: T(n, m) + T(n, n-(m+1)) = T(n, n) = A067297(n) for m=0..floor((n-1)/2). E.g., T(2*k+1, k) = A067297(2*k+1)/2.

Examples

			Triangle begins:
    1;
    1,   2;
    4,   5,   9;
   28,  32,  36,  64;
  256, 284, 300, 328, 584;
  ...
		

Crossrefs

The columns (without leading zeros) give for m=0..3: A064340, A067299, 3*A067300, 8*A067301.
The main diagonal gives A067297. The row sums give A067302.

Programs

  • PARI
    A064340(n) = if(n>1, sum(m=0, n-2, (m+1)*(m+2)*binomial(2*(n-2)-m, n-2-m)/2^(m+1))*(4^(n-1))/(n-1), 1);
    T(n, m) = sum(i=0, m, A064340(i)*A064340(n-i)); \\ Jinyuan Wang, Apr 20 2025

Formula

T(n, m) = Sum_{i=0..m} C(2,2; i)*C(2,2; n-i) if n >= m >= 0 else 0.
G.f. for column m (without leading zeros): (c(m, x)*c(2,2; x)-c2(m-1, x))/x^m, with c(2,2; x) = (1-3*x*c(4*x))/(1-2*x*c(4*x))^2 (g.f. for C(2,2; n)), c(x) = g.f. for Catalan numbers A000108, c(m, x) = Sum_{n=0..m} C(2,2; n)*x^n and c2(m, x) = Sum_{n=0..m} A067297(n)*x^n for m=0, 1, 2, ...

Extensions

More terms from Jinyuan Wang, Apr 20 2025

A201205 Bisection of half-convolution of Catalan sequence A000108; even part.

Original entry on oeis.org

1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
Offset: 0

Views

Author

Wolfdieter Lang, Jan 02 2012

Keywords

Comments

For the definition of the half-convolution of a sequence with itself see a comment to A201204.
The odd part of this bisection is found under A065097.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1+2*n,
          (2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1)
           -(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/
          ((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Formula

a(n) = sum(Catalan(k)*Catalan(2*n-k),k=0..n), n>=0, with Catalan(n)=A000108(n).
O.g.f: Ge(x)=(catao(x)+cata2(x))/2 with catao(x):= sum(Catalan(2*k+1)*x^k,k=0..infty) = (cata(sqrt(x)) - cata(-sqrt(x)))/(2*x), with the o.g.f. cata(x) of A000108, and cata2(x):=sum(Catalan(n)^2,n=0..infty) given in A001246 as (-1 + hypergeom( [-1/2,-1/2],[1],16*x))/(4*x).
a(n) = A028364(2n,n) = A067323(2n,n). - Alois P. Heinz, Nov 28 2015
a(n) = (A000108(2*n+1) + A000108(n)^2)/2. - Vladimir Reshetnikov, Oct 03 2016

Extensions

Cross-reference corrected by Robert Israel, Jun 06 2014

A362596 Number of parking functions of size n avoiding the patterns 213 and 321.

Original entry on oeis.org

1, 1, 3, 13, 60, 275, 1238, 5480, 23922, 103267, 441798, 1876366, 7921488, 33275758, 139194812, 580180598, 2410827422, 9990993443, 41308185542, 170439003998, 701953309592, 2886284314298, 11850433719572, 48591008205608, 199002198798980, 814117064956430
Offset: 0

Views

Author

Lara Pudwell, Apr 27 2023

Keywords

Examples

			For n=3 the a(3)=13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n==0, 1, (n^2 - 3*n + 4)*binomial(2*n,n)/(4*(n+1)) + 4^n/8) \\ Andrew Howroyd, Apr 27 2023
    
  • Python
    from math import comb
    def A362596(n): return ((n*(n-3)+4)*comb(n<<1,n)//(n+1)>>2)+(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023

Formula

For n>=1, a(n) = (n^2 - 3*n + 4)/4*A000108(n) + 4^(n - 1)/2.
For n>=1, a(n) = A000108(n) + Sum_{m=1..n-1} m*A028364(n-1,m-1).
G.f.: 1+((9*x^2 - 10*x + 2)*sqrt(1 - 4*x) - 23*x^2 + 14*x - 2)/(2*(1 - 4*x)^(3/2)*x).
D-finite with recurrence 2*(n+1)*a(n) +2*(-15*n+1)*a(n-1) +(167*n-193)*a(n-2) +2*(-204*n+467)*a(n-3) +184*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 11 2024

A031970 Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.

Original entry on oeis.org

0, 3, 23, 131, 664, 3166, 14545, 65187, 287060, 1247690, 5368670, 22917198, 97195968, 410030812, 1722027973, 7204620067, 30044212828, 124932768082, 518215690018, 2144815618522, 8859729437488, 36533517261412, 150410878895818, 618371102344846, 2538971850705064, 10412490129563556
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> (2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1)); # G. C. Greubel, Apr 02 2019
  • Magma
    [(2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1): n in [0..30]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    CoefficientList[Series[(1-9*x+20*x^2-(1-7*x+8*x^2)*Sqrt[1-4*x])/(2*x^2*(1 -8*x+16*x^2)), {x,0,30}],x] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1);
    /* Joerg Arndt, Dec 04 2012 */
    
  • Sage
    [(2*n^2+5*n+4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1) for n in (0..30)] # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1). - Colin Mallows.
a(n) = Sum_{i=0..n-1} (4*n-4*i-1)*A028364(n,i), where A028364 is a Catalan triangle. e.g. for n=3 T[3..] = [5,7,9,14] then S(3) = 131 = 11*5 + 7*7 + 3*9. - David Scambler, Apr 27 2009
G.f.: (1-9*x+20*x^2-(1-7*x+8*x^2)*sqrt(1-4*x))/(2*x^2*(1-8*x+16*x^2)). - Vladimir Kruchinin, Apr 02 2019
D-finite with recurrence: (n+2)*a(n) +(-15*n-14)*a(n-1) +2*(40*n-3)*a(n-2) +8*(-22*n+25)*a(n-3) +64*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jan 28 2020

Extensions

More terms from Joerg Arndt, Dec 04 2012

A116880 Generalized Catalan triangle, called CM(1,2).

Original entry on oeis.org

1, 1, 3, 3, 7, 13, 13, 29, 41, 67, 67, 147, 195, 247, 381, 381, 829, 1069, 1277, 1545, 2307, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 95235, 205059, 255747, 290691, 320707, 351187, 388099, 446455, 636925
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

This triangle generalizes the 'new' Catalan triangle A028364 (which could be called CM(1,1); M stands for author Meeussen).

Examples

			Triangle begins:
     1;
     1,    3;
     3,    7,   13;
    13,   29,   41,   67;
    67,  147,  195,  247,  381;
   381,  829, 1069, 1277, 1545, 2307;
  2307, 4995, 6339, 7379, 8451, 9975, 14589;
		

Crossrefs

Column m=0 gives A064062.
Row sums give A116881.

Programs

  • Maple
    lim:=8: c:=(1-sqrt(1-8*x))/(4*x): g:=(1+2*x*c)/(1+x): gf1:=g*(x*c)^m: for m from 0 to lim do t:=taylor(gf1, x, lim+1): for n from 0 to lim do a[n,m]:=coeff(t, x, n):od:od: gf2:=g*sum(a[s,k]*(2*c)^k,k=0..s): for s from 0 to lim do t:=taylor(gf2, x, lim+1): for n from 0 to lim do b[n,s]:=coeff(t, x, n):od:od: seq(seq(b[n-s,s],s=0..n),n=0..lim); # Nathaniel Johnston, Apr 30 2011

Formula

G.f. for columns m >= 0 (without leading zeros): c(2;x)*Sum_{k=0..m} C(1,2;m,k)*(2*c(2*x))^k with c(2;x):=(1+2*x*c(2*x))/(1+x) the g.f. of A064062 and c(x) is the g.f. of A000108 (Catalan). C(1,2;n,m) is the triangle A115193(n,m).

A067324 Third column of triangle A067323.

Original entry on oeis.org

2, 7, 23, 76, 255, 869, 3003, 10504, 37128, 132430, 476102, 1723528, 6277505, 22988385, 84592275, 312636240, 1159979700, 4319218530, 16134883410, 60452176200, 227110782990, 855361970034, 3228982640478
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

Also third diagonal of triangle A028364.

Crossrefs

Cf. A000245 (second column).

Formula

a(n)= A067323(n+2, 2)= C(n+3)-(C(n+2)+C(n+1)), C(n) := A000108(n) (Catalan).
G.f.: (c(x)^3)*(1+c(x)), with c(x) g.f. of A000108 (Catalan).

A362595 Number of parking functions of size n avoiding the patterns 132 and 321.

Original entry on oeis.org

1, 1, 3, 12, 52, 229, 1006, 4387, 18978, 81489, 347614, 1474436, 6223328, 26156242, 109528108, 457167817, 1902808318, 7899987577, 32725812958, 135297527872, 558357811048, 2300564293942, 9465003608548, 38889193275142, 159591154157092, 654190748282074
Offset: 0

Views

Author

Lara Pudwell, Apr 27 2023

Keywords

Examples

			For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{1},{2}; {3},{1,2},{}.
		

Crossrefs

Programs

  • Maple
    A362595 := proc(n)
        if n = 0 then
            1;
        else
            (n^2+n+4)*A000108(n)/4 -4^(n-1)/2 ;
        end if;
    end proc:
    seq(A362595(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
  • PARI
    a(n)=if(n==0, 1, (n^2 + n + 4)*binomial(2*n,n)/(4*(n+1)) - 4^n/8) \\ Andrew Howroyd, Apr 27 2023
    
  • Python
    from math import comb
    def A362595(n): return ((n*(n+1)+4)*comb(n<<1,n)//(n+1)>>2)-(1<<(n<<1)-3) if n>1 else 1 # Chai Wah Wu, Apr 27 2023

Formula

For n>=1, a(n) = (n^2 + n + 4)/4*A000108(n) - 4^(n - 1)/2.
For n>=1, a(n) = A000108(n) + Sum_{m=1..n} (n-m)*A028364(n-1,m-1).
G.f.: 1+((7*x^2 - 6*x + 1)*sqrt(1 - 4*x) - 15*x^2 + 8*x - 1)/(2*(1 - 4*x)^(3/2)*x).
D-finite with recurrence (n+1)*a(n) +2*(-8*n+1)*a(n-1) +(95*n-117)*a(n-2) +2*(-124*n+291)*a(n-3) +120*(2*n-7)*a(n-4)=0. - R. J. Mathar, Jan 11 2024
Previous Showing 11-20 of 26 results. Next