cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 96 results. Next

A319099 Number of solutions to x^5 == 1 (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jianing Song, Sep 10 2018

Keywords

Comments

All terms are powers of 5. Those n such that a(n) > 1 are in A066500.

Examples

			Solutions to x^5 == 1 (mod 11): x == 1, 3, 4, 5, 9 (mod 11).
Solutions to x^5 == 1 (mod 25): x == 1, 6, 11, 16, 21 (mod 25) (x == 1 (mod 5)).
Solutions to x^5 == 1 (mod 31): x == 1, 2, 4, 8, 16 (mod 31).
		

Crossrefs

Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), this sequence (k=5), A319100 (k=6), A319101 (k=7), A247257 (k=8).
Mobius transform gives A307380.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 5] == 1, 5, 1]; f[5, 1] = 1; f[5, e_] := 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 10 2023 *)
  • PARI
    a(n)=my(Z=znstar(n)[2]); prod(i=1,#Z,gcd(5,Z[i]));

Formula

Multiplicative with a(5) = 1, a(5^e) = 5 if e >= 2; for other primes p, a(p^e) = 5 if p == 1 (mod 5), a(p^e) = 1 otherwise.
If the multiplicative group of integers modulo n is isomorphic to C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = Product_{i=1..m} gcd(5, k_i).
a(n) = A000010(n)/A293482(n). - Jianing Song, Nov 10 2019

A024894 Numbers k such that 5*k + 1 is prime.

Original entry on oeis.org

2, 6, 8, 12, 14, 20, 26, 30, 36, 38, 42, 48, 50, 54, 56, 62, 66, 80, 84, 86, 92, 98, 104, 108, 114, 120, 126, 128, 132, 138, 140, 150, 152, 162, 164, 176, 182, 188, 194, 198, 204, 206, 210, 212, 218, 230, 234, 236, 240, 246, 258, 260, 264, 272, 276, 290, 294, 296, 302, 306, 314
Offset: 1

Views

Author

Keywords

Comments

a(n) = (A030430(n) - 1) / 5. - Reinhard Zumkeller, Aug 15 2013

Crossrefs

Cf. A030430.

Programs

Formula

a(n) ~ 0.8n log n. - Charles R Greathouse IV, Apr 16 2012

A049511 Numbers k such that prime(k) == 1 (mod 10).

Original entry on oeis.org

5, 11, 13, 18, 20, 26, 32, 36, 42, 43, 47, 53, 54, 58, 60, 64, 67, 79, 82, 83, 89, 94, 98, 100, 105, 110, 115, 116, 121, 125, 126, 133, 135, 141, 142, 152, 156, 160, 164, 167, 172, 173, 177, 178, 182, 190, 193, 194, 197, 202, 210, 212, 216, 218, 221, 230, 233
Offset: 1

Views

Author

Keywords

Comments

Also k for which prime(k) == 1 (mod 5). - Bruno Berselli, Mar 04 2016
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[210], Mod[Prime[ # ], 10] == 1 &] (* Ray Chandler, Nov 07 2006 *)
  • PARI
    isok(n) = !((prime(n)-1) % 10); \\ Michel Marcus, Mar 04 2016
  • Sage
    [n for n in (1..300) if Mod(nth_prime(n), 10) == 1] # Bruno Berselli, Mar 04 2016
    

Formula

a(n) = A000720(A030430(n)). - Ray Chandler, Nov 07 2006

Extensions

Extended by Ray Chandler, Nov 28 2003
Formula corrected by Zak Seidov, Sep 20 2011

A062332 Primes starting and ending with 1.

Original entry on oeis.org

11, 101, 131, 151, 181, 191, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571, 1601, 1621, 1721, 1741, 1801, 1811, 1831, 1861, 1871, 1901, 1931, 1951, 10061, 10091, 10111, 10141
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Comments

Complement of A208261 (nonprime numbers with all divisors starting and ending with digit 1) with respect to A208262 (numbers with all divisors starting and ending with digit 1). - Jaroslav Krizek, Mar 04 2012
Intersection of A030430 and A045707. - Michel Marcus, Jun 08 2013

Examples

			102701 is a member as it is a prime and the first and the last digits are both 1.
		

Crossrefs

Cf. A208259 (Numbers starting and ending with digit 1).

Programs

  • Haskell
    a062332 n = a062332_list !! (n-1)
    a062332_list = filter ((== 1) . a010051') a208259_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    fl1Q[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Last[idn]==1]; Select[ Prime[Range[1300]],fl1Q] (* Harvey P. Dale, Apr 30 2012 *)
  • PARI
    { n=-1; t=log(10); forprime (p=2, 5*10^5, if ((p-10*(p\10)) == 1 && (p\10^(log(p)\t)) == 1, write("b062332.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009
    

Formula

A010051(a(n)) * A000030(a(n)) * (a(n) mod 10) = 1. - Reinhard Zumkeller, Jul 16 2014

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 29 2001
Missing term a(36)=1901 added by Harry J. Smith, Aug 05 2009

A385782 Primes having only {1, 6, 8} as digits.

Original entry on oeis.org

11, 61, 181, 661, 811, 881, 1181, 1811, 1861, 6661, 8111, 8161, 8681, 8861, 11161, 11681, 16111, 16661, 16811, 18181, 18661, 61681, 61861, 66161, 68111, 68161, 68611, 68881, 81181, 81611, 86111, 86161, 86861, 88661, 88681, 88811, 88861, 111611, 116681, 116881
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Subsequence of A030430. Supersequence of A020454, A020456.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 6, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 6, 8}, n], PrimeQ], {n, 7}]]
    Select[10Flatten[Table[FromDigits/@Tuples[{1,6,8},n],{n,5}]]+1,PrimeQ] (* Harvey P. Dale, Aug 27 2025 *)
  • PARI
    primes_with(, 1, [1, 6, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("168"), 41))) # uses function/imports in A385776
    

A042991 Primes congruent to {0, 2, 3, 4} (mod 5).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 257, 263, 269, 277, 283, 293, 307
Offset: 1

Views

Author

Keywords

Comments

Complement of A030430 relative to A000040. [Bruno Berselli, Jan 26 2016]

Crossrefs

Has same beginning as A040159 but is strictly different.

Programs

  • Magma
    [p: p in PrimesUpTo(500) | p mod 5 in [0,2,3,4]]; // Vincenzo Librandi, Aug 09 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{0,2,3,4},Mod[#,5]]&] (* Vincenzo Librandi, Aug 09 2012 *)

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A340808 Decimal expansion of Product_{primes p == 1 (mod 5)} 1/(1-p^(-4)).

Original entry on oeis.org

1, 0, 0, 0, 0, 6, 9, 8, 7, 2, 8, 3, 2, 1, 8, 4, 2, 6, 1, 4, 1, 4, 1, 9, 6, 3, 5, 2, 6, 4, 6, 0, 0, 6, 2, 5, 1, 5, 3, 2, 3, 6, 8, 1, 4, 6, 7, 9, 6, 1, 5, 3, 4, 0, 6, 2, 7, 2, 4, 3, 4, 4, 3, 2, 6, 2, 7, 1, 4, 9, 4, 0, 1, 4, 0, 6, 7, 9, 6, 8, 5, 8, 7, 0, 9, 5, 2, 1, 5, 1, 1, 7, 9, 4, 1, 7, 3, 0, 2, 0, 1, 8, 9, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Jan 22 2021

Keywords

Comments

Equals also the same product over the primes p == 1 (mod 10).

Examples

			1.0000698728321842614141963526460062515  = (14641/14640) * (923521/923520) * (2825761/2825760) *...
		

Crossrefs

Formula

A340629 = A340004 ^2 / this.
Equals Sum_{k>=1} 1/A004615(k)^4. - Amiram Eldar, Jan 24 2021

Extensions

More digits from Vaclav Kotesovec, Jan 22 2021

A068188 Tetradic primes (primes in A006072).

Original entry on oeis.org

11, 101, 181, 18181, 1008001, 1180811, 1880881, 1881881, 100111001, 100888001, 108101801, 110111011, 111010111, 111181111, 118818811, 180101081, 181111181, 181888181, 188010881, 188888881, 10008180001, 10081818001
Offset: 1

Views

Author

Eric W. Weisstein, Feb 18 2002

Keywords

Comments

Primes that are palindromes and use only the digits 0, 1 and 8, so they read the same backwards and upside down.
11 is the only term with an even number of digits. The number of terms for an odd number of digits (3-37) is: 2, 1, 4, 12, 26, 62, 173, 392, 1087, 3197, 8189, 23354, 65128, 181486, 514255, 1447637, 4052813, 11682721. That makes the number of terms less than 10^2n (n to 19): 1, 3, 4, 8, 20, 46, 108, 281, 673, 1760, 4957, 13146, 36500, 101628, 283114, 797369, 2245006, 6297819, 17980540. - Hans Havermann, Dec 16 2017

Crossrefs

Cf. A006072, subsequence of A030430.

Programs

  • Mathematica
    TetrPrmsUpTo10powerK[k_]:= Select[FromDigits/@ Tuples[{0,1,8}, k],
    PrimeQ[#] && IntegerDigits[#] == Reverse[IntegerDigits[#]] &]; TetrPrmsUpTo10powerK[13] (* Mikk Heidemaa, May 20 2017 *)

Extensions

Edited by Jud McCranie, Jun 02 2003
Offset corrected by Arkadiusz Wesolowski, Oct 17 2011

A112386 Smallest prime obtained by appending one or more 1's to n, -1 if no such prime exists.

Original entry on oeis.org

11, 211, 31, 41, 511111, 61, 71, 811, 911, 101, 1111111111111111111, 121111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111, 131, 14111111111, 151, 16111, 1711111111, 181, 191, 2011, 211, 22111, 2311, 241
Offset: 1

Views

Author

Michel Dauchez (mdzdm(AT)yahoo.fr), Dec 04 2005

Keywords

Comments

a(37) = -1 since there is a covering of the set {371, 3711, 37111, ...} by the prime moduli 3, 7, 13, 37. Hence, there are infinitely many values -1 in the sequence (at 371, 3711, 37111, ...). - Emmanuel Vantieghem, Oct 27 2022
a(38) = -1 because 38 followed by m >= 1 1's is divisible by 3 or 37 or by (7*10^k-1)/3 if m = 3k. - Toshitaka Suzuki, Nov 07 2023

Examples

			a(5) = 511111 because 51, 511, 5111 and 51111 are not primes.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, e = Floor[Log[10, n] + 1]}, While[ !PrimeQ[n*10^k + (10^k - 1)/9], k++ ]; n*10^k + (10^k - 1)/9]; Array[f, 24] (* Robert G. Wilson v, Dec 05 2005 *)
    Table[SelectFirst[Table[FromDigits[PadRight[IntegerDigits[k],n,1]],{n,IntegerLength[k]+1,250}],PrimeQ],{k,25}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 30 2017 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Dec 05 2005
Name edited by Emmanuel Vantieghem, Oct 27 2022
Previous Showing 21-30 of 96 results. Next