cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A195158 Concentric 24-gonal numbers.

Original entry on oeis.org

0, 1, 24, 49, 96, 145, 216, 289, 384, 481, 600, 721, 864, 1009, 1176, 1345, 1536, 1729, 1944, 2161, 2400, 2641, 2904, 3169, 3456, 3745, 4056, 4369, 4704, 5041, 5400, 5761, 6144, 6529, 6936, 7345, 7776, 8209, 8664, 9121, 9600, 10081, 10584, 11089
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., and the same line from 1, in the direction 1, 49, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Main axis, perpendicular to A049598 in the same spiral.

Crossrefs

Column 24 of A195040.

Programs

Formula

a(n) = 6*n^2 + 5*((-1)^n-1)/2.
a(n) = -a(n-1) + A069190(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+22*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/144 + tan(sqrt(5/6)*Pi/2)*Pi/(4*sqrt(30)). - Amiram Eldar, Jan 17 2023

A122652 a(0) = 0, a(1) = 4; for n > 1, a(n) = 10*a(n-1) - a(n-2).

Original entry on oeis.org

0, 4, 40, 396, 3920, 38804, 384120, 3802396, 37639840, 372596004, 3688320200, 36510605996, 361417739760, 3577666791604, 35415250176280, 350574834971196, 3470333099535680, 34352756160385604, 340057228504320360, 3366219528882817996, 33322138060323859600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

Kekulé numbers for the benzenoids P_2(n).
a(n) are the values of m where A032528(m) - 1 has integer square roots. The roots are given by A001079. - Richard R. Forberg, Aug 05 2013
Numbers n such that 6*n^2 + 4 is a square. - Colin Barker, Mar 17 2014

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 283, K{P_2(n)}).

Crossrefs

Programs

Formula

G.f.: 4*x/(1 - 10*x + x^2). - Philippe Deléham, Nov 17 2008
3*a(n)^2 + 2 = 2*A001079(n)^2. - Charlie Marion, Feb 01 2013
a(n) = (2*arcsinh(sqrt(2))*sinh(2*n*arcsinh(sqrt(2)))/log(sqrt(2) + sqrt(3)))/sqrt(6). - Artur Jasinski, Aug 09 2016
a(n) = 2*A001078(n). - Bruno Berselli, Nov 25 2016
E.g.f.: sqrt(6)*exp(5*x)*sinh(2*sqrt(6)*x)/3. - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

More terms and better definition from Benoit Cloitre, Sep 23 2006

A238410 a(n) = floor((3(n-1)^2 + 1)/2).

Original entry on oeis.org

0, 2, 6, 14, 24, 38, 54, 74, 96, 122, 150, 182, 216, 254, 294, 338, 384, 434, 486, 542, 600, 662, 726, 794, 864, 938, 1014, 1094, 1176, 1262, 1350, 1442, 1536, 1634, 1734, 1838, 1944, 2054, 2166, 2282, 2400, 2522, 2646, 2774, 2904, 3038, 3174, 3314, 3456, 3602, 3750, 3902, 4056, 4214, 4374, 4538, 4704
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2014

Keywords

Comments

a(n) = the eccentric connectivity index of the path P[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined to be the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(4)=14 because the vertices of P[4] have degrees 1,2,2,1 and eccentricities 3,2,2,3; we have 1*3 + 2*2 + 2*2 + 1*3 = 14.
From Paul Curtz, Feb 23 2023: (Start)
East spoke of the hexagonal spiral using A004526 with a single 0:
.
43 42 42 41 41 40
43 28 28 27 27 26 40
44 29 17 16 16 15 26 39
44 29 17 8 8 7 15 25 39
45 30 18 9 3 2 7 14 25 38
45 30 18 9 3 0---2---6--14--24--38-->
31 19 10 4 1 1 6 13 24 37
31 19 10 4 5 5 13 23 37
32 20 11 11 12 12 23 36
32 20 21 21 22 22 36
33 33 34 34 35 35
.

Crossrefs

Programs

  • Maple
    a := proc (n) options operator, arrow: floor((3/2)*(n-1)^2+1/2) end proc: seq(a(n), n = 1 .. 70);
  • Mathematica
    Table[Floor[(3(n-1)^2+1)/2],{n,80}]  (* or *) LinearRecurrence[{2,0,-2,1},{0,2,6,14},80] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    a(n)=(3*(n-1)^2 + 1)\2 \\ Charles R Greathouse IV, Feb 15 2017

Formula

a(n) = (3*n)^2/6 for n even and a(n) = ((3*n)^2 + 3)/6 for n odd. - Miquel Cerda, Jun 17 2016
From Ilya Gutkovskiy, Jun 17 2016: (Start)
G.f.: 2*x^2*(1 + x + x^2)/((1 - x)^3*(1 + x)).
a(n) = (6*n^2 - 12*n + 7 + (-1)^n)/4.
a(n) = 2* A077043(n-1). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Matthew House, Feb 15 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tanh(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Mar 12 2023

A122653 a(n) = 10*a(n-1) - a(n-2) with a(0)=0, a(1)=6.

Original entry on oeis.org

0, 6, 60, 594, 5880, 58206, 576180, 5703594, 56459760, 558894006, 5532480300, 54765908994, 542126609640, 5366500187406, 53122875264420, 525862252456794, 5205499649303520, 51529134240578406, 510085842756480540, 5049329293324226994, 49983207090485789400
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2006

Keywords

Comments

Kekulé numbers for the benzenoids P''(n).
a(n) are the integer square roots of A032528(m) - 1. A001079 gives the value of m where these roots occur. Also see A122652. - Richard R. Forberg, Aug 05 2013
Numbers n such that 6*n^2 + 9 is a square. - Colin Barker, Mar 17 2014

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 301).

Programs

Formula

G.f.: 6x/(1 - 10x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = 6*A004189(n). - R. J. Mathar, Jun 22 2020
6*a(n)^2+9 = (3*A001079(n))^2 - detail of the Barker comment. - R. J. Mathar, Jun 22 2020

Extensions

More terms and better definition from Benoit Cloitre, Sep 23 2006

A184533 a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.

Original entry on oeis.org

2, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Column 2 of the array at A184532.

Crossrefs

Cf. A183532, A183534. Essenitally the same as A032528.

Programs

  • Mathematica
    p[n_]:=FractionalPart[(n^3+2)^(1/3)]; q[n_]:=Floor[1/p[n]]; Table[q[n],{n,1,120}]
    Join[{2},Table[(6*n^2 - (1-(-1)^n))/4,{n,2,50}]] (* or *) Join[{2}, LinearRecurrence[{2,0,-2,1},{6, 13, 24, 37},50]] (* G. C. Greubel, Feb 20 2017 *)
  • PARI
    a(n)=my(x=sqrtn(n^3+2,3));x-=n;1/x\1 \\ Charles R Greathouse IV, Aug 23 2011
    
  • PARI
    concat([2], for(n=2,25, print1((6*n^2 - (1-(-1)^n))/4, ", "))) \\ G. C. Greubel, Feb 20 2017

Formula

a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (6*n^2 - (1-(-1)^n))/4 for n>1.
From Alexander R. Povolotsky, Aug 22 2011: (Start)
a(n+1) +a(n) = 3*n^2 + 3*n + 1.
G.f.: x*(-2 - 2*x - x^2 - 2*x^3 + x^4)/((-1 + x)^3*(1 + x)). (End)
a(n) = floor(1/((n^3+2)^(1/3)-n)). - Charles R Greathouse IV, Aug 23 2011
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x) + 2*x)/2. - Stefano Spezia, Apr 19 2025

A194273 Concentric triangular numbers (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55, 63, 72, 81, 90, 99, 109, 120, 132, 144, 156, 168, 181, 195, 210, 225, 240, 255, 271, 288, 306, 324, 342, 360, 379, 399, 420, 441, 462, 483, 505, 528, 552, 576, 600, 624, 649, 675, 702, 729, 756, 783, 811
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

This can be interpreted as a cellular automaton on the infinite hexagonal net. The sequence gives the number of cells "ON" in the structure after n-th stage. A194272 gives the first differences. For a definition without words see the illustration of initial terms in the example section. For other concentric polygonal numbers see A194274, A194275 and A032528.
Also, row sums of an infinite square array T(n,k) in which column k lists 6*k-1 zeros followed by the numbers A008486 (see example).

Examples

			Using the numbers A008486 we can write:
0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,...
0, 0, 0, 0, 0,  0,  0,  1,  3,  6,  9, 12, 15, 18,...
0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  1,...
And so on.
=========================================================
The sums of the columns give this sequence:
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55,...
...
Illustration of initial terms:
.                                              o
.                                 o           o o
.                      o         o o         o   o
.             o       o o       o   o       o     o
.      o     o o     o   o     o     o     o       o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    3      6        9          12           15
.
.                                           o
.                        o                 o o
.       o               o o               o   o
.      o o             o   o             o     o
.     o   o           o     o           o   o   o
.    o     o         o   o   o         o   o o   o
.   o   o   o       o   o o   o       o   o o o   o
.  o         o     o           o     o             o
. o o o o o o o   o o o o o o o o   o o o o o o o o o
.
.       19               24                 30
		

Crossrefs

Formula

G.f.: x/(1-3*x+3*x^2-3*x^4+3*x^5-x^6) = x/((1-x)^3*(1+x)*(1-x+x^2)).

A277644 Beatty sequence for sqrt(6)/2.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Jason Kimberley, Oct 26 2016

Keywords

Comments

Eggleton et al. show that k is in this sequence if and only if A277515(k)=3.

Examples

			a(5)=6 because the quotient of 3*5^2 by 2 is 37 which lies between 6^2 and 7^2.
		

References

  • R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.

Crossrefs

Cf. A000196, A032528, A115754, A277515. Complement of A277645.

Programs

  • Magma
    [Isqrt(3*n^2 div 2): n in [1..60]];
    
  • Mathematica
    Floor[Range[100]*Sqrt[3/2]] (* Paolo Xausa, Jul 11 2024 *)
  • PARI
    a(n)=sqrtint(3*n^2\2) \\ Charles R Greathouse IV, Jul 11 2024

Formula

a(n) = floor(n*sqrt(6)/2).
a(n) = A000196(A032528(n)).

A211783 Rectangular array: R(n,k)=n^2+[(n^2)/2]+...+[(n^2)/k], where [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 13, 7, 1, 25, 24, 16, 8, 1, 36, 37, 29, 18, 8, 1, 49, 54, 45, 33, 19, 8, 1, 64, 73, 66, 51, 36, 20, 8, 1, 81, 96, 89, 75, 56, 38, 21, 8, 1, 100, 121, 117, 101, 82, 60, 40, 22, 8, 1, 121, 150, 148, 133, 110, 88, 63, 42, 23, 8, 1, 144, 181, 183
Offset: 0

Views

Author

Clark Kimberling, Apr 20 2012

Keywords

Comments

For n>=1, row n is a homogeneous linear recurrence sequence with palindromic recurrence coefficients in the sense described at A211701.
Row 1: A000290
Row 2: A032528
Row 3: A211784
R(n,n)=A118014(n,n)
The sequence approached as a limit of the rows is A175346: (1,8,23,50,87,140,...)

Examples

			Northwest corner:
1....4....9....16....25....36
1....6....13...24....37....54
1....7....16...29....35....66
1....8....18...33....51....75
1....8....19...36....56....82
1....8....20...38....60....88
1....8....21...40....63....93
		

Crossrefs

Programs

  • Mathematica
    f[n_, m_] := Sum[Floor[n^2/k], {k, 1, m}]
    TableForm[Table[f[n, m], {m, 1, 40}, {n, 1, 16}]]
    Flatten[Table[f[n + 1 - m, m], {n, 1, 14}, {m, 1, n}]]

A211786 n^3 + floor(n^3/2).

Original entry on oeis.org

1, 12, 40, 96, 187, 324, 514, 768, 1093, 1500, 1996, 2592, 3295, 4116, 5062, 6144, 7369, 8748, 10288, 12000, 13891, 15972, 18250, 20736, 23437, 26364, 29524, 32928, 36583, 40500, 44686, 49152, 53905, 58956, 64312, 69984, 75979, 82308
Offset: 1

Views

Author

Clark Kimberling, Apr 20 2012

Keywords

Comments

Row 2 of the array A211785.

Crossrefs

Cf. A032766 (n+floor(n/2)), A032528 (n^2+floor(n^2/2)), A211701.

Programs

  • Magma
    [n^3+Floor(n^3/2): n in [1..38]]; // Bruno Berselli, May 06 2012
  • Mathematica
    f[n_, m_] := Sum[Floor[n^3/k], {k, 1, m}]
    t = Table[f[n, 2], {n, 1, 90}]
    FindLinearRecurrence[t]
    LinearRecurrence[{3, -2, -2, 3, -1},{1, 12, 40, 96, 187},38] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: x*(1+9*x+6*x^2+2*x^3)/((1+x)*(1-x)^4). [Bruno Berselli, May 06 2012]
a(n) = floor(3*n^3/2) = (6*n^3+(-1)^n-1)/4. [Bruno Berselli, May 06 2012]

A229834 Expansion of (1+4*x+x^2) / ((1-x)^3*(1+x)^4).

Original entry on oeis.org

1, 3, 1, 11, -2, 26, -10, 50, -25, 85, -49, 133, -84, 196, -132, 276, -195, 375, -275, 495, -374, 638, -494, 806, -637, 1001, -805, 1225, -1000, 1480, -1224, 1768, -1479, 2091, -1767, 2451, -2090, 2850, -2450, 3290, -2849, 3773, -3289, 4301, -3772, 4876, -4300, 5500, -4875, 6175, -5499, 6903, -6174, 7686, -6902
Offset: 0

Views

Author

Stefano Maruelli, Dec 19 2013

Keywords

Comments

The sequence can be generated in the following way:
--------------------------- --------------------------
[0] [1] [2] [3] [4] ... [i]
--------------------------- --------------------------
[0] 1, 1, 1, 1, 1, ... t(0,i) = 1
[1] 7, 6, 5, 4, 3, ... t(1,i) = t(1,i-1) - t(0,i)
[2] 19, 13, 8, 4, 1, ... t(2,i) = t(2,i-1) - t(1,i)
[3] 37, 24, 16, 12, 11, ... t(3,i) = t(3,i-1) - t(2,i)
[4] 61, 37, 21, 9, -2, ... t(4,i) = t(4,i-1) - t(3,i)
[5] 91, 54, 33, 24, 26, ... etc.
[6] 127, 73, 40, 16, -10, ...
[7] 169, 96, 56, 40, 50, ...
[8] 217, 121, 65, 25, -25, ...
[9] 271, 150, 85, 60, 85, ...
...
Column 0 is A003215;
column 1 is A032528;
column 2 is A001082;
column 3 is A241496;
column 4 is this sequence.
The third differences are 16, -35, 64, -105, 160, ..., a signed variant of A077415. - R. J. Mathar, Apr 18 2014

Crossrefs

Cf. A077415; A058373: a(2k) = -A058373(k); A051925: a(2k+1) = A051925(k+2).
Columns of the table in Comments section: A001082, A003215, A032528.

Programs

  • Mathematica
    Table[1 + n (n + 5) (9 - (2 n + 5) (-1)^n)/48, {n, 0, 60}] (* Bruno Berselli, Apr 22 2014 *)
    CoefficientList[Series[(1+4x+x^2)/((1-x)^3(1+x)^4),{x,0,60}],x] (* or *) LinearRecurrence[{-1,3,3,-3,-3,1,1},{1,3,1,11,-2,26,-10},60] (* Harvey P. Dale, Jan 27 2022 *)

Formula

G.f.: (1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^4). - R. J. Mathar, Apr 18 2014
a(n) = a(-n-5) = 1 + n*(n + 5)*(9 - (2*n + 5)*(-1)^n)/48. [Bruno Berselli, Apr 22 2014]
Previous Showing 31-40 of 44 results. Next