cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 99 results. Next

A207375 Irregular array read by rows in which row n lists the (one or two) central divisors of n in increasing order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 2, 3, 1, 7, 2, 4, 3, 2, 5, 1, 11, 3, 4, 1, 13, 2, 7, 3, 5, 4, 1, 17, 3, 6, 1, 19, 4, 5, 3, 7, 2, 11, 1, 23, 4, 6, 5, 2, 13, 3, 9, 4, 7, 1, 29, 5, 6, 1, 31, 4, 8, 3, 11, 2, 17, 5, 7, 6, 1, 37, 2, 19, 3, 13, 5, 8, 1, 41, 6, 7, 1, 43
Offset: 1

Views

Author

Omar E. Pol, Feb 23 2012

Keywords

Comments

If n is a square then row n lists only the square root of n because the squares (A000290) have only one central divisor.
If n is not a square then row n lists the pair (j, k) of divisors of n, nearest to the square root of n, such that j*k = n.
Conjecture 1: It appears that the n-th record in this sequence is the last member of row A008578(n).
Column 1 gives A033676. Right border gives A033677. - Omar E. Pol, Feb 26 2019
The conjecture 1 follows from Bertrand's Postulate. - Charles R Greathouse IV, Feb 11 2022
Row products give A097448. - Omar E. Pol, Feb 17 2022

Examples

			Array begins:
  1;
  1,  2;
  1,  3;
  2;
  1,  5;
  2,  3;
  1,  7;
  2,  4;
  3;
  2,  5;
  1, 11;
  3,  4;
  1, 13;
...
		

Crossrefs

Row n has length A169695(n).
Row sums give A207376.

Programs

  • Mathematica
    A207375row[n_] := ArrayPad[#, -Floor[(Length[#] - 1)/2]] & [Divisors[n]];
    Array[A207375row, 50] (* Paolo Xausa, Apr 07 2025 *)

A116882 A number k is included if (highest odd divisor of k)^2 <= k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1

Views

Author

Leroy Quet, Feb 24 2006

Keywords

Comments

Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023

Examples

			40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
		

Crossrefs

The complement is A116883.
Positions of zeros (and 1) in A341675.
A051283 = numbers without a superior prime-power divisor (zeros of A341593).
A059172 = numbers without a superior squarefree divisor (zeros of A341592).
A063539 = numbers without a superior prime divisor (zeros of A341591).
A333805 counts strictly inferior odd divisors.
A341594 counts strictly superior odd divisors.
- Strictly Inferior: A056924, A060775, A070039, A333806, A341596, A341674.
Subsequence of A082662, {1} U A363122.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *)
    q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
  • PARI
    isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
    
  • PARI
    isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
    
  • Python
    from itertools import count, islice
    def A116882_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1)))
    A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023

Formula

a(n) = A080075(n-1)-1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 10 2006

A069288 Number of odd divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(n) = #{d : d = A182469(n,k), d <= A000196(n), k=1..A001227(n)}. - Reinhard Zumkeller, Apr 05 2015

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
The inferior odd divisors for selected n are the columns below:
n: 1    9   30   90  225  315  630  945 1575 2835 4410 3465 8190 6930
  --------------------------------------------------------------------
   1    3    5    9   15   15   21   27   35   45   63   55   65   77
        1    3    5    9    9   15   21   25   35   49   45   63   63
             1    3    5    7    9   15   21   27   45   35   45   55
                  1    3    5    7    9   15   21   35   33   39   45
                       1    3    5    7    9   15   21   21   35   35
                            1    3    5    7    9   15   15   21   33
                                 1    3    5    7    9   11   15   21
                                      1    3    5    7    9   13   15
                                           1    3    5    7    9   11
                                                1    3    5    7    9
                                                     1    3    5    7
                                                          1    3    5
                                                               1    3
                                                                    1
(End)
		

Crossrefs

Positions of first appearances are A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A000009 counts partitions into odd parts (A066208).
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A067659 counts strict partitions of odd length (A030059).
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A038548 counts inferior divisors.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.

Programs

Formula

G.f.: Sum_{n>=1} 1/(1-q^(2*n-1)) * q^((2*n-1)^2). [Joerg Arndt, Mar 04 2010]

A161908 Array read by rows in which row n lists the divisors of n that are >= sqrt(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 6, 7, 4, 8, 3, 9, 5, 10, 11, 4, 6, 12, 13, 7, 14, 5, 15, 4, 8, 16, 17, 6, 9, 18, 19, 5, 10, 20, 7, 21, 11, 22, 23, 6, 8, 12, 24, 5, 25, 13, 26, 9, 27, 7, 14, 28, 29, 6, 10, 15, 30, 31, 8, 16, 32, 11, 33, 17, 34, 7, 35, 6, 9, 12, 18, 36, 37, 19, 38, 13, 39, 8, 10, 20, 40, 41, 7, 14, 21, 42, 43, 11, 22, 44, 9, 15, 45, 23, 46, 47, 8, 12, 16
Offset: 1

Views

Author

Omar E. Pol, Jun 27 2009

Keywords

Comments

T(n,A038548(n)) = n. - Reinhard Zumkeller, Mar 08 2013
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by this sequence. - Gus Wiseman, Mar 08 2021

Examples

			Array begins:
1;
2;
3;
2,4;
5;
3,6;
7;
4,8;
3,9;
5,10;
11;
4,6,12;
13;
7,14;
5,15;
4,8,16;
		

Crossrefs

Final terms are A000027.
Initial terms are A033677.
Row lengths are A038548 (number of superior divisors).
Row sums are A070038 (sum of superior divisors).
The inferior version is A161906.
The prime terms are counted by A341591.
The squarefree terms are counted by A341592.
The prime-power terms are counted by A341593.
The strictly superior version is A341673.
The strictly inferior version is A341674.
The odd terms are counted by A341675.
A001221 counts prime divisors, with sum A001414.
A056924 counts strictly superior (or strictly inferior divisors).
A207375 lists central divisors.
- Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341677.

Programs

  • Haskell
    a161908 n k = a161908_tabf !! (n-1) !! (k-1)
    a161908_row n = a161908_tabf !! (n-1)
    a161908_tabf = zipWith
                   (\x ds -> reverse $ map (div x) ds) [1..] a161906_tabf
    -- Reinhard Zumkeller, Mar 08 2013
  • Mathematica
    Table[Select[Divisors[n],#>=Sqrt[n]&],{n,100}]//Flatten (* Harvey P. Dale, Jan 01 2021 *)

Extensions

More terms from Sean A. Irvine, Nov 29 2010

A027424 Number of distinct products ij with 1 <= i, j <= n (number of distinct terms in n X n multiplication table).

Original entry on oeis.org

1, 3, 6, 9, 14, 18, 25, 30, 36, 42, 53, 59, 72, 80, 89, 97, 114, 123, 142, 152, 164, 176, 199, 209, 225, 239, 254, 267, 296, 308, 339, 354, 372, 390, 410, 423, 460, 480, 501, 517, 558, 575, 618, 638, 659, 683, 730, 747, 778, 800, 827, 850, 903
Offset: 1

Views

Author

Keywords

Comments

As n->infinity what is an asymptotic expression for a(n)? Reply from Carl Pomerance: Erdős showed that a(n) is o(n^2). Linnik and Vinogradov (1960) showed it is O(n^2/(log n)^c) for some c > 0. Finer estimations were achieved in the book Divisors by Hall and Tenenbaum (Cambridge, 1988), see Theorem 23 on p. 33.
An easy lower bound is to consider primes p > n/2, times anything < n. This gives n^2/(2 log n). - Richard C. Schroeppel, Jul 05 2003
A033677(n) is the smallest k such that n appears in the k X k multiplication table and a(k) is the number of n with A033677(n) <= k.
Erdős showed in 1955 that a(n)=O(n^2/(log n)^c) for some c>0. In 1960, Erdős proved a(n) = n^2/(log n)^(b+o(1)), where b = 1-(1+loglog 2)/log 2 = 0.08607... In 2004, Ford proved a(n) is bounded between two positive constant multiples of n^2/((log n)^b (log log n)^(3/2)). - Kevin Ford (ford(AT)math.uiuc.edu), Apr 20 2006

References

  • Hall, Richard Roxby, and Gérald Tenenbaum. Divisors. Cambridge University Press, 1988.
  • Y. V. Linnik and I. M. Vinogradov, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ. 15 (1960), 41-49 (in Russian).

Crossrefs

Equals A027384 - 1. First differences are in A062854.
Column 2 of A322967.
Cf. A074738 (constant in asymptotic).

Programs

  • Haskell
    import Data.List (nub)
    a027424 n = length $ nub [i*j | i <- [1..n], j <- [1..n]]
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Maple
    A027424m := proc(d,n)
        local a,dvs ;
        a := 0 ;
        for dvs in numtheory[divisors](d) do
            if dvs <= n then
                a := max(a,dvs) ;
            end if;
        end do:
        a ;
    end proc:
    A027424 := proc(n)
        add(add(numtheory[mobius](L/d) *floor(A027424m(d,n) *n/L), d=numtheory[divisors](L)), L=1..n^2) ;
    end proc:
    seq(A027424(n),n=1..40) ; # R. J. Mathar, Oct 02 2020
  • Mathematica
    u = {}; Table[u = Union[u, n*Range[n]]; Length[u], {n, 100}] (* T. D. Noe, Jan 07 2012 *)
  • PARI
    multab(N)=local(v,cv,s,t); v=vector(N); cv=vector(N*N); v[1]=cv[1]=1; for(k=2,N,s=0:for(l=1,k,t=k*l: if(cv[t]==0,s++);cv[t]++);v[k]=v[k-1]+s);v \\ Ralf Stephan
    
  • PARI
    A027424(n)=my(u=0);sum(j=1,n,sum(i=1,j,!bittest(u,i*j) && u+=1<<(i*j))) \\ M. F. Hasler, Oct 08 2012
    
  • PARI
    a(n)=#Set(concat(Vec(matrix(n,n,i,j,i*j)))) \\ Charles R Greathouse IV, Mar 27 2014
    
  • PARI
    a(n) = #setbinop((x,y)->x*y, vector(n, i, i)); \\ Michel Marcus, Jun 19 2015
    
  • Python
    def A027424(n): return len({i*j for i in range(1,n+1) for j in range(1,i+1)}) # Chai Wah Wu, Oct 13 2023

Formula

a(n) = Sum_{L=1..n^2} Sum_{d|L} moebius(L/d) * floor( m(d,n) * n / L ), where m(d,n) is the maximum divisor of d not exceeding n. - Max Alekseyev, Jul 14 2011
a(2^i-1) = A027417(i)-1. - N. J. A. Sloane, Sep 01 2018
From Mats Granvik, Nov 26 2019: (Start)
n^2 = Sum_{m=1..n^2} Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n]
a(n) = Sum_{m=1..n^2} sign( Sum_{k=1..n^2} [k|m]*[m <= n*k]*[k <= n] ), conjecture.
(End)

A063962 Number of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 04 2001

Keywords

Comments

For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.
a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021

Examples

			a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33.
From _Gus Wiseman_, Feb 25 2021: (Start)
The a(n) inferior prime divisors (columns) for selected n:
n =  3  8  24  3660  390  3570 87780
   ---------------------------------
    {}  2   2     2    2     2     2
            3     3    3     3     3
                  5    5     5     5
                      13     7     7
                            17    11
                                  19
(End)
		

Crossrefs

Zeros are at indices A008578.
The divisors are listed by A161906 and add up to A097974.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A063538/A063539 have/lack a superior prime divisor.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
- Strictly Inferior: A056924, A060775, A070039, A333805, A341596, A341674.
- Strictly Superior: A056924, A140271, A238535, A341594, A341595, A341673.

Programs

  • Haskell
    a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n]
    -- Reinhard Zumkeller, Apr 05 2012
  • Maple
    with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # Emeric Deutsch
  • Mathematica
    Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale, Mar 26 2015 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
    

Formula

G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021

Extensions

Revised definition from Emeric Deutsch, Jan 31 2006

A063538 Numbers n that are not sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) >= sqrt(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence lists all numbers with a superior prime divisor, which is unique (A341676) when it exists. For example, 42 is in the sequence because it has a prime divisor 7 which is greater than the quotient 42/7 = 6. - Gus Wiseman, Feb 19 2021

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms; see pp. 95-98.

Crossrefs

Complement of A063539. Supersequence of A001358 (semiprimes).
The strictly superior version is A064052 (complement: A048098), with associated unique prime divisor A341643.
The case of odd instead of prime divisors is A116883 (complement: A116882).
Also nonzeros of A341591 (number of superior prime divisors).
The unique superior prime divisors of the terms are A341676.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts superior (also inferior) divisors.
A161908 lists superior divisors.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [2,seq(2*i+1, i=1..floor((N-1)/2))]):
    S:= {seq(seq(m*p, m = 1 .. min(p, N/p)),p=Primes)}:
    sort(convert(S,list)); # Robert Israel, Sep 01 2015
  • Mathematica
    Select[Range[2, 91], FactorInteger[#][[-1, 1]] >= Sqrt[#] &] (* Ivan Neretin, Aug 30 2015 *)
  • Python
    from math import isqrt
    from sympy import primepi
    def A063538(n):
        def f(x): return int(n+x-primepi(x//(y:=isqrt(x)))-sum(primepi(x//i)-primepi(i) for i in range(1,y)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 05 2024

Formula

Union of A001248 and A064052. - Gus Wiseman, Feb 24 2021

A140271 Least divisor of n that is > sqrt(n), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 8, 17, 6, 19, 5, 7, 11, 23, 6, 25, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 49, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 16, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10, 27
Offset: 1

Views

Author

Leroy Quet, May 16 2008

Keywords

Comments

If n is not a square, then a(n) = A033677(n).
If we define a divisor d|n to be strictly superior if d > n/d, then strictly superior divisors are counted by A056924 and listed by A341673. This sequence selects the smallest strictly superior divisor of n. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
a(n) is the smallest element in the following sets of strictly superior divisors:
   1: {1}       16: {8,16}        31: {31}
   2: {2}       17: {17}          32: {8,16,32}
   3: {3}       18: {6,9,18}      33: {11,33}
   4: {4}       19: {19}          34: {17,34}
   5: {5}       20: {5,10,20}     35: {7,35}
   6: {3,6}     21: {7,21}        36: {9,12,18,36}
   7: {7}       22: {11,22}       37: {37}
   8: {4,8}     23: {23}          38: {19,38}
   9: {9}       24: {6,8,12,24}   39: {13,39}
  10: {5,10}    25: {25}          40: {8,10,20,40}
  11: {11}      26: {13,26}       41: {41}
  12: {4,6,12}  27: {9,27}        42: {7,14,21,42}
  13: {13}      28: {7,14,28}     43: {43}
  14: {7,14}    29: {29}          44: {11,22,44}
  15: {5,15}    30: {6,10,15,30}  45: {9,15,45}
(End)
		

Crossrefs

These divisors are counted by A056924.
These divisors add up to A238535.
These divisors that are odd are counted by A341594.
These divisors that are squarefree are counted by A341595
These divisors that are prime are counted by A341642.
These divisors are listed by A341673.
A038548 counts superior (or inferior) divisors.
A161906 lists inferior divisors.
A161908 lists superior divisors.
A207375 list central divisors.
A341674 lists strictly inferior divisors.
- Strictly Inferior: A070039, A333805, A333806, A341596, A341677.
- Strictly Superior: A048098, A064052, A341643, A341644, A341646.

Programs

  • Maple
    with(numtheory):
    a:= n-> min(select(d-> is(d=n or d>sqrt(n)), divisors(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018
  • Mathematica
    Table[Select[Divisors[n], # > Sqrt[n] &][[1]], {n, 2, 70}] (* Stefan Steinerberger, May 18 2008 *)
  • PARI
    A140271(n)={local(d,a);d=divisors(n);a=n;for(i=1,length(d),if(d[i]>sqrt(n),a=min (d[i],a)));a} \\ Michael B. Porter, Apr 06 2010

Extensions

More terms from Stefan Steinerberger, May 18 2008
a(70)-a(80) from Ray Chandler, Jun 25 2009
Franklin T. Adams-Watters, Jan 26 2018, added a(1) = 1 to preserve the relation a(n) | n.

A333805 Number of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2020

Keywords

Comments

If we define a divisor d|n to be strictly inferior if d < n/d, then strictly inferior divisors are counted by A056924 and listed by A341674. This sequence counts strictly inferior odd divisors. - Gus Wiseman, Feb 26 2021

Examples

			The strictly inferior odd divisors of 945 are 1, 3, 5, 7, 9, 15, 21, 27, so a(945) = 8. - _Gus Wiseman_, Feb 27 2021
		

Crossrefs

Dominated by A001227 (number of odd divisors).
Strictly inferior divisors (not just odd) are counted by A056924.
The non-strict version is A069288.
These divisors add up to A070039.
The case of prime divisors is A333806.
The strictly superior version is A341594.
The case of squarefree divisors is A341596.
The superior version is A341675.
The case of prime-power divisors is A341677.
A006530 selects the greatest prime factor.
A020639 selects the smallest prime factor.
- Odd -
A000009 counts partitions into odd parts, ranked by A066208.
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A067659 counts strict partitions of odd length, ranked by A030059.
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A060775 selects the greatest strictly inferior divisor.
A341674 lists strictly inferior divisors.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 90}]
    nmax = 90; CoefficientList[Series[Sum[x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A333805(n) = sumdiv(n,d,(d%2)&&((d*d)Antti Karttunen, Nov 02 2022

Formula

G.f.: Sum_{k>=1} x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).

Extensions

Data section extended up to a(105) by Antti Karttunen, Nov 02 2022

A341674 Irregular triangle read by rows giving the strictly inferior divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 4, 1, 3, 1, 2, 1, 5, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 1, 2, 3, 6, 1, 1, 2, 4, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2021

Keywords

Comments

We define a divisor d|n to be strictly inferior if d < n/d. The number of strictly inferior divisors of n is A056924(n).

Examples

			Triangle begins:
     1: {}        16: 1,2        31: 1
     2: 1         17: 1          32: 1,2,4
     3: 1         18: 1,2,3      33: 1,3
     4: 1         19: 1          34: 1,2
     5: 1         20: 1,2,4      35: 1,5
     6: 1,2       21: 1,3        36: 1,2,3,4
     7: 1         22: 1,2        37: 1
     8: 1,2       23: 1          38: 1,2
     9: 1         24: 1,2,3,4    39: 1,3
    10: 1,2       25: 1          40: 1,2,4,5
    11: 1         26: 1,2        41: 1
    12: 1,2,3     27: 1,3        42: 1,2,3,6
    13: 1         28: 1,2,4      43: 1
    14: 1,2       29: 1          44: 1,2,4
    15: 1,3       30: 1,2,3,5    45: 1,3,5
		

Crossrefs

Initial terms are A000012.
Row lengths are A056924 (number of strictly inferior divisors).
Final terms are A060775.
Row sums are A070039 (sum of strictly inferior divisors).
The weakly inferior version is A161906.
The weakly superior version is A161908.
The odd terms are counted by A333805.
The prime terms are counted by A333806.
The squarefree terms are counted by A341596.
The strictly superior version is A341673.
The prime-power terms are counted by A341677.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A207375 lists central divisors.

Programs

  • Mathematica
    Table[Select[Divisors[n],#
    				
Previous Showing 11-20 of 99 results. Next