A209328 Decimal expansion of the sum of the inverse twin prime products.
1, 0, 7, 9, 8, 3, 9, 7, 4, 9, 5
Offset: 0
Examples
0.10798397495... = 1/(3*5) + 1/(5*7) + 1/(11*13) + .. = Sum_{n>=1} 1/A037074(n).
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
0.10798397495... = 1/(3*5) + 1/(5*7) + 1/(11*13) + .. = Sum_{n>=1} 1/A037074(n).
a(1) = 2 * (product of 1st twin prime pair) = 2*3*5 = 30.
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 3]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
[9*n^2-1: n in [1..50]]; // Vincenzo Librandi, May 09 2011
Table[9n^2 - 1, {n, 1, 100}] LinearRecurrence[{3,-3,1},{8,35,80},50] (* Harvey P. Dale, Oct 09 2012 *)
a(n)=9*n^2-1 \\ Charles R Greathouse IV, Oct 07 2015
m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601.
with(numtheory); A210503:= proc(q) local a,n,p; for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n,gcd(a,n^2+a^2))=1 then print(n); fi; od; end: A210503(100000);
from math import sqrt from sympy import factorint from gmpy2 import mpz, is_square, gcd A210503 = [] for n in range(2, 10**5): nd = sum([mpz(n*e/p) for p, e in factorint(n).items()]) if is_square(nd**2+n**2) and gcd(gcd(n, nd), mpz(sqrt(nd**2+n**2))) == 1: A210503.append(n) # Chai Wah Wu, Aug 21 2014
a[n_] := If[n == 1, 1, GCD[n, Times@@ ((First[#]+2)^Last[#] &/@FactorInteger[n])]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018~ *)
A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); }; A322362(n) = gcd(n, A166590(n));
a(18) = 35 because 5 and 7 divide 35 and 7 - 5 = 2.
isA059267 := proc(n) local m ; if modp(n,4)=0 then true; else for m from 2 to ceil(sqrt(n)) do if modp(n,m^2-1) = 0 then return true ; end if; end do; false ; end if; end proc: for n from 1 to 130 do if isA059267(n) then printf("%d,",n) ; end if; end do:
d1d2Q[n_]:=Mod[n,4]==0||AnyTrue[Sqrt[#+1]&/@Divisors[n],IntegerQ]; Select[ Range[ 200],d1d2Q] (* Harvey P. Dale, May 31 2020 *)
isA059267(n)={ n%4==0 || fordiv( n,d, issquare(d+1) && return(1))} \\ M. F. Hasler, Aug 29 2008
is_A059267(n) = fordiv( n,d, n%(d+2)||return(1)) \\ M. F. Hasler, Jun 02 2012
[16*n^2+16*n+3: n in [1..700]| IsPrime(4*n+1) and IsPrime(4*n+3)]; // Vincenzo Librandi, Feb 24 2015
lista(nn) = {forprime(p=3, nn, if ((((p-1) % 4) == 0) && isprime(p+2), print1(p*(p+2), ", ")););} \\ Michel Marcus, Feb 24 2015
a(143)=a(11*13)=a(11)*a(13)=13*11=143; a(77)=a(7*11)=a(7)*a(11)=5*13=65.
a[n_] := Product[{p, e} = pe; If[p <= 3, p, If[PrimeQ[p+2], p+2, If[PrimeQ[p-2], p-2, p]]]^e, {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Nov 20 2021 *)
The first two twin prime pairs are (3,5) and (5,7), their products: 15 and 35, therefore a(2)=15*35=525.
a = {4, 6, 12, 18, 30, 42, 60, 72, 102, 108, 138, 150} (* A014574 *); Table[ Product[a[[k]]^2 - 1, {k, 1, n}], {n, 1, 12}] Rest[FoldList[Times,1,Times@@@Select[Partition[Prime[Range[50]],2,1],#[[2]]-#[[1]]==2&]]] (* Harvey P. Dale, Jan 19 2015 *) step[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p+2], {{p,p+2}}, {}]], p}] pairList[n_] := First[NestWhile[step, {{{3, 5}}, 3}, Length[First[step[#]]]<=n&]] a037074[n_] := Map[Apply[Times, #]&, pairList[n]] a074040[n_] := Rest[FoldList[Times, 1, a037074[n]]] a074040[11] (* Hartmut F. W. Hoft, Apr 27 2021 *)
a221054 n = a221054_list !! (n-1) a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where z u v [] = u == v z u v (p:ps) = z (u + p) v ps || z u (v + p) ps -- Reinhard Zumkeller, Apr 18 2013
q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* Amiram Eldar, May 31 2025 *)
isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ Michel Marcus, May 31 2025
Comments