cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A007519 Primes of form 8n+1, that is, primes congruent to 1 mod 8.

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321, 1361
Offset: 1

Views

Author

Keywords

Comments

Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Integers n (n > 9) of form 4k + 1 such that binomial(n-1, (n-1)/4) == 1 (mod n) - Benoit Cloitre, Feb 07 2004
Primes of the form x^2 + 8y^2. - T. D. Noe, May 07 2005
Also primes of the form x^2 + 16y^2. See A140633. - T. D. Noe, May 19 2008
Is this the same sequence as A141174?
Being a subset of A001132 and also a subset of A038873, this is also a subset of the primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
These primes p are only which possess the property: for every integer m from interval [0, p) with the Hamming distance D(m, p) = 2, there exists an integer h from (m, p) with D(m, h) = 2. - Vladimir Shevelev, Apr 18 2012
Primes p such that p XOR 6 = p + 6. - Brad Clardy, Jul 22 2012
Odd primes p such that -1 is a 4th power mod p. - Eric M. Schmidt, Mar 27 2014
There are infinitely many primes of this form. See Brubaker link. - Alonso del Arte, Jan 12 2017
These primes split in Z[sqrt(2)]. For example, 17 = (-1)(1 - 3*sqrt(2))(1 + 3*sqrt(2)). This is also true of primes of the form 8n - 1. - Alonso del Arte, Jan 26 2017

Examples

			a(1) = 17 = 2 * 8 + 1 = (10001)_2. All numbers m from [0, 17) with the Hamming distance D(m, 17) = 2 are 0, 3, 5, 9. For m = 0, we can take h = 3, since 3 is drawn from (0, 17) and D(0, 3) = 2; for m = 3, we can take h = 5, since 5 from (3, 17) and D(3, 5) = 2; for m = 5, we can take h = 6, since 6 from (5, 17) and D(5, 6) = 2; for m = 9, we can take h = 10, since 10 is drawn from (9, 17) and D(9, 10) = 2. - _Vladimir Shevelev_, Apr 18 2012
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

Subsequence of A017077 and of A038873.
Cf. A139643. Complement in primes of A154264. Cf. A042987.
Cf. A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).
Cf. also A242663.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Haskell
    a007519 n = a007519_list !! (n-1)
    a007519_list = filter ((== 1) . a010051) [1,9..]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 1 ]; // Vincenzo Librandi, Aug 21 2012
    
  • Mathematica
    Select[1 + 8 Range@ 170, PrimeQ] (* Robert G. Wilson v *)
  • PARI
    forprime(p=2,1e4,if(p%8==1,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    forprimestep(p=17,10^4,8, print1(p", ")) \\ Charles R Greathouse IV, Jul 17 2024
    
  • PARI
    lista(nn)= my(vpr = []); for (x = 0, nn, y = 0; while ((v = x^2+6*x*y+y^2) < nn, if (isprime(v), if (! vecsearch(vpr, v), vpr = concat(vpr, v); vpr = vecsort(vpr););); y++;);); vpr; \\ Michel Marcus, Feb 01 2014
    
  • PARI
    A007519_upto(N, start=1)=select(t->t%8==1,primes([start,N]))
    #A7519=A007519_upto(10^5)
    A007519(n)={while(#A7519A007519_upto(N*3\2, N+1))); A7519[n]} \\ M. F. Hasler, May 22 2025
    
  • SageMath
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 4, -4])
    print(Q.represented_positives(1361, 'prime'))  # Peter Luschny, Jan 26 2017

A007522 Primes of the form 8n+7, that is, primes congruent to -1 mod 8.

Original entry on oeis.org

7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1151
Offset: 1

Views

Author

Keywords

Comments

Primes that are the sum of no fewer than four positive squares.
Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Primes p such that x^4 = 2 has just two solutions mod p. Subsequence of A040098. Solutions mod p are represented by integers from 0 to p - 1. For p > 2, i is a solution mod p of x^4 = 2 if and only if p - i is a solution mod p of x^4 = 2, so the sum of the two solutions is p. The solutions are given in A065907 and A065908. - Klaus Brockhaus, Nov 28 2001
As this is a subset of A001132, this is also a subset of the primes of form x^2 - 2y^2. And as this is also a subset of A038873, this is also a subset of the primes of form x^2 - 2y^2. - Tito Piezas III, Dec 28 2008
Subsequence of A141164. - Reinhard Zumkeller, Mar 26 2011
Also a subsequence of primes of the form x^2 + y^2 + z^2 + 1. - Arkadiusz Wesolowski, Apr 05 2012
Primes p such that p XOR 6 = p - 6. - Brad Clardy, Jul 22 2012

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Subsequence of A004771.
Cf. A141174 (d = 32). A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).

Programs

  • Haskell
    a007522 n = a007522_list !! (n-1)
    a007522_list = filter ((== 1) . a010051) a004771_list
    -- Reinhard Zumkeller, Jan 29 2013
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 7]; // Vincenzo Librandi, Jun 26 2014
  • Maple
    select(isprime, [seq(i,i=7..10000,8)]); # Robert Israel, Nov 22 2016
  • Mathematica
    Select[8Range[200] - 1, PrimeQ] (* Alonso del Arte, Nov 07 2016 *)
  • PARI
    (A007522(m) = local(p, s, x, z); forprime(p = 3, m, s = []; for(x = 0, p-1, if(x^4%p == 2%p, s = concat(s, [x]))); z = matsize(s)[2]; if(z == 2, print1(p, ", ")))); A007522(1400)  \\ Does not return a(m) but prints all terms <= m. - Edited to make it executable by M. F. Hasler, May 22 2025.
    
  • PARI
    A007522_upto(N, start=1)=select(p->p%8==7, primes([start, N]))
    #A7522=A007522_upto(10^5)
    A007522(n)={while(#A7522A007522_upto(N*3\2, N+1))); A7522[n]} \\ M. F. Hasler, May 22 2025
    

Formula

Equals A000040 INTERSECT A004215. - R. J. Mathar, Nov 22 2006
a(n) = 7 + A139487(n)*8, n >= 1. - Wolfdieter Lang, Feb 18 2015

A038872 Primes congruent to {0, 1, 4} mod 5.

Original entry on oeis.org

5, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Views

Author

Keywords

Comments

Also odd primes p such that 5 is a square mod p: (5/p) = +1 for p > 5.
Primes of the form x^2 + x*y - y^2 (as well as of the form x^2 + 3*x*y + y^2), both with discriminant = 5 and class number = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1. [This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales, Jun 06 2008. R. J. Mathar proved on Jul 22 2008 that this coincides with the present sequence.]
Also primes of the form 5x^2 - y^2 (cf. A031363). - N. J. A. Sloane, May 30 2014
Also primes of the form x^2 + 4*x*y - y^2. Every binary quadratic primitive form of discriminant 20 or 5 has proper solutions for positive integers N given in A089270, including the present primes. Proof from computing the corresponding representative parallel primitive forms, which leads to x^2 - 5 == 0 (mod N) or x^2 + x - 1 == 0 (mod N) which have solutions precisely for these positive N values, including these primes. - Wolfdieter Lang, Jun 19 2019
For a Pythagorean triple a, b, c, these primes (and 2) are the possible prime factors of 2a + b, |2a - b|, 2b + a, and 2b - a. - J. Lowell, Nov 05 2011
The prime factors of A028387(n^2+3n+1). - Richard R. Forberg, Dec 12 2014
Except for p = 5, these are primes p that divide Fibonacci(p-1). - Dmitry Kamenetsky, Jul 27 2015
Apart from the first term, these are rational primes that decompose in the field Q[sqrt(5)]. For example, 11 = ((7 + sqrt(5))/2)*((7 - sqrt(5))/2), 19 = ((9 + sqrt(5))/2)*((9 - sqrt(5))/2). - Jianing Song, Nov 23 2018
The possible prime factors of x^2 - x - 1. - Charles R Greathouse IV, Mar 18 2022

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5); A038873 (d=8); A068228, A141123 (d=12); A038883 (d=13). A038889 (d=17); A141111, A141112 (d=65).
Cf. A003631 (complement with respect to A000040).

Programs

  • GAP
    Filtered(Concatenation([5],Flat(List([1..140],k->[5*k-1,5*k+1]))),IsPrime); # Muniru A Asiru, Nov 24 2018
  • Magma
    [ p: p in PrimesUpTo(700) | p mod 5 in {0,1,4}]; // Vincenzo Librandi, Aug 21 2012
    
  • Maple
    select(isprime, [5, seq(op([5*k-1,5*k+1]),k=1..1000)]); # Robert Israel, Dec 22 2014
  • Mathematica
    Join[{5}, Select[Prime[Range[4, 100]], Mod[#, 5] == 1 || Mod[#, 5] == 4 &]] (* Alonso del Arte, Nov 27 2011 *)
  • PARI
    forprime(p=2,1e3,if(kronecker(5,p)>=0,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A045468(n-1) for n > 1. - Robert Israel, Dec 22 2014
a(n) ~ 2n*log(n). - Charles R Greathouse IV, Nov 29 2016

Extensions

Corrected and extended by Peter K. Pearson, May 29 2005
Edited by N. J. A. Sloane, Jul 28 2008 at the suggestion of R. J. Mathar

A038883 Odd primes p such that 13 is a square mod p.

Original entry on oeis.org

3, 13, 17, 23, 29, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 563, 569, 571, 599, 601, 607, 641
Offset: 1

Views

Author

Keywords

Comments

Equivalently, by quadratic reciprocity (since 13 == 1 (mod 4)), primes p which are squares mod 13.
The squares mod 13 are 0, 1, 4, 9, 3, 12 and 10.
Also primes of the form x^2 + 3*x*y - y^2. Discriminant = 13. Class = 1. This was originally a separate entry, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 06 2008. R. J. Mathar proved that this coincides with the present sequence, Jul 22 2008
Primes p such that x^2 + x = 3 has a solution mod p (the solutions over the reals are (-1+-sqrt(13))/2). - Joerg Arndt, Jul 27 2011

Examples

			13 == 1 (mod 3) and 1 is a square, so 3 is on the list.
101 is prime and congruent to 7^2 = 49 == 10 (mod 13), so 101 is on the list.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (primes p such that d=13 is a square mod p). A038889 (d=17). A141111, A141112 (d=65).
Cf. A296937.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    Select[ Prime@ Range@ 118, JacobiSymbol[ #, 13] > -1 &] (* Robert G. Wilson v, May 16 2008 *)
    Select[Flatten[Table[13n + {1, 3, 4, 9, 10, 12}, {n, 50}]], PrimeQ[#] &] (* Alonso del Arte, Sep 16 2012 *)
  • PARI
    forprime(p=3,1e3,if(issquare(Mod(13,p)),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    select( {is_A038883(n)=bittest(5659,n%13)&&isprime(n)}, [0..666]) \\ M. F. Hasler, Feb 17 2022
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 3, -1])
    print(Q.represented_positives(641, 'prime')) # Peter Luschny, Sep 20 2018

Formula

A000040 \ A120330 U {13}: Complement of A120330 in the primes, and 13. - M. F. Hasler, Feb 17 2022

Extensions

Edited by N. J. A. Sloane, Apr 27 2008, Jul 28 2008

A001132 Primes == +-1 (mod 8).

Original entry on oeis.org

7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2 is a quadratic residue mod p.
Also primes p such that p divides 2^((p-1)/2) - 1. - Cino Hilliard, Sep 04 2004
A001132 is exactly formed by the prime numbers of A118905: in fact at first every prime p of A118905 is p = u^2 - v^2 + 2uv, with for example u odd and v even so that p - 1 = 4u'(u' + 1) + 4v'(2u' + 1 - v') when u = 2u' + 1 and v = 2v'. u'(u' + 1) is even and v'(2u' + 1 - v') is always even. At second hand if p = 8k +- 1, p has the shape x^2 - 2y^2; letting u = x - y and v = y, comes p = (x - y)^2 - y^2 + 2(x - y)y = u^2 - v^2 + 2uv so p is a sum of the two legs of a Pythagorean triangle. - Richard Choulet, Dec 16 2008
These are also the primes of form x^2 - 2y^2, excluding 2. See A038873. - Tito Piezas III, Dec 28 2008
Primes p such that p^2 mod 48 = 1. - Gary Detlefs, Dec 29 2011
Primes in A047522. - Reinhard Zumkeller, Jan 07 2012
This sequence gives the odd primes p which satisfy C(p, x = 0) = +1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For the proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Each a(n) corresponds to precisely one primitive Pythagorean triangle. For a proof see the W. Lang link, also for a table. See also the comment by Richard Choulet above, where the case u even and v odd has not been considered. - Wolfdieter Lang, Feb 17 2015
Primes p such that p^2 mod 16 = 1. - Vincenzo Librandi, May 23 2016
Rational primes that decompose in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes p such that x^m = 2 (mod p) has a solution see A001132 (for m = 2), A040028 (m = 3), A040098 (m = 4), A040159 (m = 5), A040992 (m = 6), A042966 (m = 7), A045315 (m = 8), A049596 (m = 9), A049542 (m = 10) - A049595 (m = 63). Jeff Lagarias (lagarias(AT)umich.edu) points out that all these sequences are different, although this may not be apparent from looking just at the initial terms.
Agrees with A038873 except for initial term.
Union of A007519 and A007522.

Programs

  • Haskell
    a001132 n = a001132_list !! (n-1)
    a001132_list = [x | x <- a047522_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [p: p in PrimesUpTo (600) | p^2 mod 16 eq 1]; // Vincenzo Librandi, May 23 2016
  • Maple
    seq(`if`(member(ithprime(n) mod 8, {1,7}),ithprime(n),NULL),n=1..109); # Nathaniel Johnston, Jun 26 2011
    for n from 1 to 600 do if (ithprime(n)^2 mod 48 = 1) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
  • Mathematica
    Select[Prime[Range[250]], MemberQ[{1, 7}, Mod[#, 8]] &]  (* Harvey P. Dale, Apr 29 2011 *)
    Select[Union[8Range[100] - 1, 8Range[100] + 1], PrimeQ] (* Alonso del Arte, May 22 2016 *)
  • PARI
    select(p->p%8==1 ||p%8==7, primes(100)) \\ Charles R Greathouse IV, May 18 2015
    

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 18 2015

A033212 Primes congruent to 1 or 19 (mod 30).

Original entry on oeis.org

19, 31, 61, 79, 109, 139, 151, 181, 199, 211, 229, 241, 271, 331, 349, 379, 409, 421, 439, 499, 541, 571, 601, 619, 631, 661, 691, 709, 739, 751, 769, 811, 829, 859, 919, 991, 1009, 1021, 1039, 1051, 1069, 1129, 1171, 1201, 1231, 1249, 1279, 1291, 1321, 1381
Offset: 1

Views

Author

Keywords

Comments

Theorem: Same as primes of the form x^2+15*y^2 (discriminant -60). Proof: Cox, Cor. 2.27, p. 36.
Equivalently, primes congruent to 1 or 4 (mod 15). Also x^2+xy+4y^2 is the principal form of (fundamental) discriminant -15. The only other class for -15 contains the form 2x^2+xy+2y^2 (A106859), in the other genus. - Rick L. Shepherd, Jul 25 2014
Three further theorems (these were originally stated as conjectures, but are now known to be theorems, thanks to the work of J. B. Tunnell - see link):
1. The same as primes of the form x^2-xy+4y^2 (discriminant -15) and x^2-xy+19y^2 (discriminant -75), both with x and y nonnegative. - T. D. Noe, Apr 29 2008
2. The same as primes of the form x^2+xy+19y^2 (discriminant -75), with x and y nonnegative. - T. D. Noe, Apr 29 2008
3. The same as primes of the form x^2+5xy-5y^2 (discriminant 45). - N. J. A. Sloane, Jun 01 2014
Also primes of the form x^2+7*x*y+y^2 (discriminant 45).
Lemma (Will Jagy, Jun 12 2014): If c is any (positive or negative) even number, then x^2 + x y + c y^2 and x^2 + (4 c - 1) y^2 represent the same odd numbers.
Proof: x (x + y) + c y^2 = odd, therefore x is odd, x + y odd, so y is even. Let y = 2 t. Then x( x + 2 t) + 4 c t^2 = x^2 + 2 x t + 4 c t^2 = (x+t)^2 + (4c-1) t^2 = odd. QED With c = 4, neither one represents 2, so x^2+15y^2 and x^2+xy+4y^2 represent the same primes.
Also, primes which are squares (mod 3*5). Subsequence of A191018. - David Broadhurst and M. F. Hasler, Jan 15 2016

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.

Crossrefs

Primes in A243173 and in A243174.
Cf. A141785 (d=45), A033212 (Primes of form x^2+15*y^2), A038872(d=5), A038873 (d=8), A068228, A141123 (d=12), A038883 (d=13), A038889 (d=17), A141111, A141112 (d=65).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 15, 10000] (* see A106856 *)
    Select[Prime@Range[250], MemberQ[{1, 19}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    select(n->n%30==1||n%30==19, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    
  • PARI
    is(p)=issquare(Mod(p,15))&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Formula

a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

Extensions

Edited by N. J. A. Sloane, Jun 01 2014 and Oct 18 2014: added Tunnell document, revised entry, merged with A141184. The latter entry was submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008.
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A141123 Primes of the form -x^2+2*x*y+2*y^2 (as well as of the form 3*x^2+6*x*y+2*y^2).

Original entry on oeis.org

2, 3, 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008

Keywords

Comments

Discriminant = 12. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
This is exactly {2} U A068231, primes congruent to 11 (mod 12). This is because the orders of imaginary quadratic fields with discriminant 12 has 1 class per genus (can be verified by the quadclassunit() function in PARI), so the primes represented by a binary quadratic form of this discriminant are determined by a congruence condition. - Jianing Song, Jun 22 2025

Examples

			a(3) = 11 because we can write 11 = -1^2 + 2*1*2 + 2*2^2 (or 11 = 3*1^2 + 6*1*1 + 2*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

Crossrefs

Cf. A038872 (d=5), A038873 (d=8), A068228 (d=12, 48, or -36), A038883 (d=13), A038889 (d=17), A141111 and A141112 (d=65).
Essentially the same as A068231 and A141187.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. A084917.

Programs

  • Maple
    N:= 2000:
    S:= NULL:
    for xx from 1 to floor(2*sqrt(N/3)) do
      for yy from ceil(sqrt(max(1,3*xx^2-N))) to floor(sqrt(3)*xx) do
         S:= S, 3*xx^2-yy^2;
    od od:
    sort(convert(select(isprime,{S}),list)); # Robert Israel, Jul 20 2020
  • Mathematica
    Reap[For[p = 2, p < 2000, p = NextPrime[p], If[FindInstance[p == -x^2 + 2*x*y + 2*y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]]
    (* or: *)
    Select[Prime[Range[200]], # == 2 || # == 3 || Mod[#, 12] == 11&] (* Jean-François Alcover, Oct 25 2016, updated Oct 29 2016 *)

Extensions

More terms from Colin Barker, Apr 05 2015

A040028 Primes p such that x^3 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 31, 41, 43, 47, 53, 59, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 149, 157, 167, 173, 179, 191, 197, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 281, 283, 293, 307, 311, 317, 347, 353, 359, 383, 389, 397, 401, 419, 431, 433
Offset: 1

Views

Author

Keywords

Comments

This is the union of {3}, A003627 (primes congruent to 2 mod 3) and A014752 (primes of the form x^2+27y^2). By Thm. 4.15 of [Cox], p is of the form x^2+27y^2 if and only if p is congruent to 1 mod 3 and 2 is a cubic residue mod p. If p is not congruent to 1 mod 3, then every number is a cubic residue mod p, including 2. - Andrew V. Sutherland, Apr 26 2008
Complement of A040034 relative to A000040. - Vincenzo Librandi, Sep 13 2012

References

  • David A. Cox, "Primes of the Form x^2+ny^2", 1998, John Wiley & Sons.
  • Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory", second ed., 1990, Springer-Verlag.

Crossrefs

Cf. A001132. Number of primes p < 10^n for which 2 is a cubic residue (mod p) is in A097142.
For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...

Programs

  • Magma
    [ p: p in PrimesUpTo(433) | exists(t){x : x in ResidueClassRing(p) | x^3 eq 2} ]; // Klaus Brockhaus, Dec 02 2008
    
  • Mathematica
    f[p_] := Block[{k = 2}, While[k < p && Mod[k^3, p] != 2, k++ ]; If[k == p, 0, 1]]; Select[ Prime[ Range[100]], f[ # ] == 1 &] (* Robert G. Wilson v, Jul 26 2004 *)
  • PARI
    select(p->ispower(Mod(2,p),3),primes(100)) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) ~ (3/2) n log n. - Charles R Greathouse IV, Apr 06 2022

Extensions

Typo corrected to A014752 by Paul Landon (paullandon(AT)hotmail.com), Jan 25 2010

A003629 Primes p == +- 3 (mod 8), or, primes p such that 2 is not a square mod p.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563
Offset: 1

Views

Author

Keywords

Comments

Complement of A038873 relative to A000040.
Also primes p such that p divides 2^((p-1)/2) + 1. - Cino Hilliard, Sep 04 2004
Primes p such that p^2 == 25 (mod 48), n > 1. - Gary Detlefs, Dec 29 2011
This sequence gives the primes p which satisfy C(p, x = 0) = -1, where C(p, x) is the minimal polynomial of 2*cos(Pi/p) (see A187360). For a proof see a comment on C(n, 0) in A230075. - Wolfdieter Lang, Oct 24 2013
Except for the initial 3, these are the primes p such that Fibonacci(p) mod 6 = 5. - Gary Detlefs, May 26 2014
Inert rational primes in the field Q(sqrt(2)). - N. J. A. Sloane, Dec 26 2017
If a prime p is congruent to 3 or 5 (mod 8) and r > 1, then 2^((p-1)*p^(r-1)/2) == -1 (mod p^r). - Marina Ibrishimova, Sep 29 2018
For the proofs or the comments by Cino Hilliard and Marina Ibrishimova, see link below. - Robert Israel, Apr 24 2019

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Ronald S. Irving, Integers, Polynomials, and Rings. New York: Springer-Verlag (2004): 274.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001132 (complement from the odd primes), A007521 (subsequence), A038873, A226523.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo (600) | p^2 mod 48 eq 25]; // Vincenzo Librandi, May 23 2016
  • Maple
    for n from 2 to 563 do if(ithprime(n)^2 mod 48 = 25) then print(ithprime(n)) fi od. # Gary Detlefs, Dec 29 2011
  • Mathematica
    Select[Prime @ Range[2, 105], JacobiSymbol[2, # ] == -1 &] (* Robert G. Wilson v, Dec 15 2005 *)
    Select[Union[8Range[100] - 5, 8Range[100] - 3], PrimeQ[#] &] (* Alonso del Arte, May 22 2016 *)
    Select[Prime[Range[150]],MemberQ[{3,5},Mod[#,8]]&] (* Harvey P. Dale, Mar 02 2022 *)
  • PARI
    is(n)=isprime(n) && (n%8==3 || n%8==5) \\ Charles R Greathouse IV, Mar 21 2016
    

A057126 Numbers k such that 2 is a square mod k.

Original entry on oeis.org

1, 2, 7, 14, 17, 23, 31, 34, 41, 46, 47, 49, 62, 71, 73, 79, 82, 89, 94, 97, 98, 103, 113, 119, 127, 137, 142, 146, 151, 158, 161, 167, 178, 191, 193, 194, 199, 206, 217, 223, 226, 233, 238, 239, 241, 254, 257, 263, 271, 274, 281, 287, 289, 302, 311, 313, 322
Offset: 1

Views

Author

Henry Bottomley, Aug 10 2000

Keywords

Comments

Numbers that are not multiples of 4 and for which all odd prime factors are congruent to +/- 1 mod 8. - Eric M. Schmidt, Apr 20 2013
Apparently the same as the list of numbers primitively represented by the indefinite quadratic form x^2 - 2y^2 (cf. A035251). - N. J. A. Sloane, Jun 11 2014
From Wolfdieter Lang, Jul 11 2025: (Start)
Also the negative sequence lists the numbers properly represented by the indefinite quadratic form x^2 - 2*y^2 of discriminant 4*2 = 8. For the proof see the W. Lang paper linked in A385449, Lemma 18, pp. 22-23.
The connection between the proper positive fundamental solutions (X, Y) of X^2 - 2*Y^2 = -a(n), given in A385449, and the solutions (x, y) of x^2 - 2*y^2 = a(n) is (x, y) = (2*Y - X, X - Y). If y becomes nonpositive a transformation with the matrix Mat([3,4], [2,3]) will give the positive proper fundamental solution. See the example section of A385449. See also the Nov 09 2009 comment in A035251 by Franklin T. Adams-Watters for this connection, and for the matrix eq. (38) p. 14 of the mentioned linked paper.
Therefore the previous statement on the representation of a(n) is true.(End)

Crossrefs

Includes the primes in A038873 and these (primes congruent to {1, 2, 7} mod 8) are the prime factors of the terms in this sequence.
Cf. A087780 (number of solutions mod n).

Programs

  • Maple
    with(numtheory); [seq(mroot(2,2,p),p=1..300)];
  • Mathematica
    ok[n_] := Reduce[ Mod[2 - k^2, n] == 0, k, Integers] =!= False; Prepend[ Select[ Range[400], ok], 1] (* Jean-François Alcover, Sep 20 2012 *)
  • PARI
    isok(n) = issquare(Mod(2,n)); \\ Michel Marcus, Feb 19 2016

Extensions

Checked by T. D. Noe, Apr 19 2007
Previous Showing 11-20 of 73 results. Next