cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A179986 Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.

Original entry on oeis.org

0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2011

Keywords

Comments

This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019

Crossrefs

Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12).

Programs

Formula

G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014
a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A061047 Numerator of 1/49 - 1/n^2.

Original entry on oeis.org

0, 15, 32, 51, 72, 95, 120, 3, 176, 207, 240, 275, 312, 351, 8, 435, 480, 527, 576, 627, 680, 15, 792, 851, 912, 975, 1040, 1107, 24, 1247, 1320, 1395, 1472, 1551, 1632, 5, 1800, 1887, 1976, 2067, 2160, 2255, 48, 2451, 2552, 2655, 2760, 2867
Offset: 7

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

a(n) = (n+7)^2-49 = n*(n+14) = A098848(n), except a(7p). The corresponding series of atomic transitions is named Hansen-Strong. It comes after Lyman (1906-1914), Balmer (1885), Paschen (1908), Brackett (1922), Pfund (1924) and Humphreys series (1952 not 1953, justified later). - Paul Curtz, Oct 07 2008

Crossrefs

Programs

  • Magma
    [Numerator(1/49-1/n^2): n in [7..60]]; // Vincenzo Librandi, Sep 07 2016
  • Mathematica
    Table[Numerator[1/49-1/n^2],{n,7,70}] (* Harvey P. Dale, Apr 26 2016 *)
  • PARI
    a(n) = numerator(1/49 - 1/n^2); \\ Michel Marcus, Aug 15 2013
    

Extensions

Edited by M. F. Hasler, Nov 17 2014

A062728 Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.

Original entry on oeis.org

0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Old name: Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,8,...
Sequence found by reading the line from 0, in the direction 0, 25, ... and the line from 8, in the direction 8, 51, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 24 2012

Examples

			The spiral begins:
          15
          / \
        16  14
        /     \
      17   3  13
      /   / \   \
    18   4   2  12
    /   /     \   \
  19   5   0---1  11
  /   /             \
20   6---7---8---9--10
		

Crossrefs

Cf. A051682.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, this sequence, A135705.

Programs

Formula

a(n) = n*(9*n+7)/2.
a(n) = 9*n + a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Bruno Berselli, Jan 13 2011: (Start)
G.f.: x*(8 + x)/(1 - x)^3.
a(n) = Sum_{i=0..n-1} A017257(i) for n > 0. (End)
a(n) = A218470(9n+7). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(16 + 9*x)*exp(x)/2. - G. C. Greubel, May 24 2019

Extensions

New name from Bruno Berselli (with the original formula), Jan 13 2011

A033567 a(n) = (2*n-1)*(4*n-1).

Original entry on oeis.org

1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225
Offset: 0

Views

Author

Keywords

Comments

a(n+1) = A005563(1), A061037(3), A061039(5), A061041(7), A061043(9), A061045(11), A061047(13), A061049(15). Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, ... spectra of hydrogen. - Paul Curtz, Oct 08 2008
Sequence found by reading the segment [1, 3] together with the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Programs

  • Magma
    [(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
  • Mathematica
    Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *)
    LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
    

Formula

a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 06 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2).
E.g.f.: (1 + 2*x + 8*x^2)*exp(x).
G.f.: (1 + 15*x^2)/(1 - x)^3. (End)
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/4 - log(2)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (sqrt(2)-1)*Pi/4 + log(sqrt(2)-1)/sqrt(2). (End)

Extensions

More terms from Michel Marcus, Apr 12 2015

A144437 Period 3: repeat [3, 3, 1].

Original entry on oeis.org

3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 1

Views

Author

Paul Curtz, Oct 05 2008

Keywords

Comments

The sequence is generated from numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...
Conjecture: a(n) is the separatix. See A045944.
Also the decimal expansion of the constant 3310/999. - R. J. Mathar, May 21 2009
Continued fraction expansion of A171417.
Greatest common divisor of (n+1)^2-1 and (n+1)^2+2. - Bruno Berselli, Mar 08 2017

Crossrefs

Numerators in the energy differences of the hydrogen spectrum: A005563(1), A061037(4), A061039(6), A061041(8), A061043(10), A061045(12), A061047(14), A061049(16), ...

Programs

Formula

a(n) = (7-4*cos(2*Pi*n/3))/3. - Jaume Oliver Lafont, Nov 23 2008
G.f.: x*(3 + 3*x + x^2)/((1 - x)*(1 + x + x^2)). - R. J. Mathar, May 21 2009
a(n) = 3/gcd(n,3). - Reinhard Zumkeller, Oct 30 2009
a(n) = denominator(n^k/3), where k>0 is an integer. - Enrique Pérez Herrero, Oct 05 2011
a(n) = gcd(T(n+1), T(2)) = A256095(n+1, 2), with the triangular numbers T = A000217, for n >= 1. - Wolfdieter Lang, Mar 17 2015
a(n) = a(n-3) for n>3; a(n) = A169609(n) for n>0. - Wesley Ivan Hurt, Jul 02 2016
E.g.f.: (1/3)*(7*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2) - 3). - G. C. Greubel, Aug 24 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 9/(a(n-2)*a(n-1)).
a(n) = 7 - a(n-2) - a(n-1). See also A052901 or A069705. (End)

Extensions

Edited by R. J. Mathar, May 21 2009

A174709 Partial sums of floor(n/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Partial sums of A152467.

Examples

			a(7) = floor(0/6) + floor(1/6) + floor(2/6) + floor(3/6) + floor(4/6) + floor(5/6) + floor(6/6) + floor(7/6) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 = 2.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-4)/12) = round((2*n^2 - 8*n - 1)/24).
a(n) = floor((n-2)^2/12).
a(n) = ceiling((n+1)*(n-5)/12).
a(n) = a(n-6) + n - 5, n > 5.
From R. J. Mathar, Nov 30 2010: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8).
G.f.: -x^6 / ( (1+x)*(x^2-x+1)*(1+x+x^2)*(x-1)^3 ).
a(n) = -n/3 + 5/72 + n^2/12 + (-1)^n/24 + A057079(n+5)/6 + A061347(n)/18. (End)
a(6n) = A000567(n), a(6n+1) = 2*A000326(n), a(6n+2) = A033428(n), a(6n+3) = A049451(n), a(6n+4) = A045944(n), a(6n+5) = A028896(n). - Philippe Deléham, Mar 26 2013
a(n) = A008724(n-2). - R. J. Mathar, Jul 10 2015
Sum_{n>=6} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 13 2022

A212194 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the staggered hexagonal square grid graph SH_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -5, 8, -4, 0, 1, -16, 112, -448, 1120, -1791, 1786, -1012, 248, 0, 1, -33, 510, -4898, 32703, -160859, 602408, -1749715, 3975561, -7068408, 9755858, -10265148, 7968348, -4304712, 1445104, -226720, 0, 1, -56, 1508, -25992, 321994, -3051871, 23000726, -141421592, 722137763, -3101089710
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

T differs from A212162 first at (n,k) = (5,10): T(5,10) = -3101089710, A212162(5,10) = -3101089711.
The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                        o--o--o
.                                        | /|\ |
.                                        |/ | \|
.                            o--o        o--o--o
.                            | /|        | /|\ |
.                            |/ |        |/ | \|
.               o            o--o        o--o--o
Graph:       SH_(1,1)      SH_(2,2)      SH_(3,3)
Vertices:       1             4             9
Edges:          0             5            16
The staggered hexagonal square grid graph SH_(2,2) has chromatic polynomial q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0].
Triangle T(n,k) begins:
1,    0;
1,   -5,     8,      -4,        0;
1,  -16,   112,    -448,     1120,      -1791, ...
1,  -33,   510,   -4898,    32703,    -160859, ...
1,  -56,  1508,  -25992,   321994,   -3051871, ... , -3101089710, ...
1,  -85,  3520,  -94620,  1855860,  -28306676, ...
1, -120,  7068, -272344,  7720110, -171656543, ...
1, -161, 12782, -667058, 25738055, -783003395, ...
		

Crossrefs

Columns 1-2 give: A000012, (-1)*A045944(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.

A135705 a(n) = 10*binomial(n,2) + 9*n.

Original entry on oeis.org

0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Comments

Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012

Crossrefs

Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, A062728, this sequence.
Cf. A195162.

Programs

  • GAP
    List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *)
    Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
  • PARI
    a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
a(n) = A003154(n+1) - A000290(n+1). - Leo Tavares, Mar 29 2022

A165355 a(n) = 3n + 1 if n is even, or a(n) = (3n + 1)/2 if n is odd.

Original entry on oeis.org

1, 2, 7, 5, 13, 8, 19, 11, 25, 14, 31, 17, 37, 20, 43, 23, 49, 26, 55, 29, 61, 32, 67, 35, 73, 38, 79, 41, 85, 44, 91, 47, 97, 50, 103, 53, 109, 56, 115, 59, 121, 62, 127, 65, 133, 68, 139, 71, 145, 74, 151, 77, 157, 80, 163, 83, 169, 86, 175, 89, 181, 92, 187, 95, 193, 98
Offset: 0

Views

Author

Paul Curtz, Sep 16 2009

Keywords

Comments

Second trisection of A026741.
A111329(n+1) = A000041(a(n)). - Reinhard Zumkeller, Nov 19 2009
We observe that this sequence is a particular case of sequence for which there exists q: a(n+3) = (a(n+2)*a(n+1)+q)/a(n) for every n >= n0. Here q=-9 and n0=0. - Richard Choulet, Mar 01 2010
The entries are also encountered via the bilinear transform approximation to the natural log (unit circle). Specifically, evaluating 2(z-1)/(z+1) at z = 2, 3, 4, ..., A165355 entries stem from the pair (sums) seen 2 ahead of each new successive prime. For clarity, the evaluation output is 2, 3, 1, 1, 6, 5, 4, 3, 10, 7, 3, 2, 14, 9, 8, 5, 18, 11, ..., where (1+1), (4+3), (3+2), (8+5), ... generate the A165355 entries (after the first). As an aside, the same mechanism links A165355 to A140777. - Bill McEachen, Jan 08 2015
As a follow-up to the previous comment, it appears that the numerators and denominators of 2(z-1)/(z+1) are respectively given by A145979 and A060819, but with different offsets. - Michel Marcus, Jan 14 2015
Odd parts of the terms give A067745. E.g.: 1, 2/2, 7, 5, 13, 8/8 .... - Joe Slater, Nov 30 2016

Crossrefs

Programs

  • Mathematica
    f[n_] := If[ OddQ@ n, (3n +1)/2, (3n +1)]; Array[f, 66, 0] (* Robert G. Wilson v, Jan 26 2015 *)
    f[n_] := (3 (-1)^(2n) + (-1)^(1 + n)) (-2 + 3n)/4; Array[f, 66] (* or *)
    CoefficientList[ Series[(x^3 + 5x^2 + 2x + 1)/(x^2 - 1)^2, {x, 0, 65}], x] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {1, 2, 7, 5}, 66] (* Robert G. Wilson v, Apr 13 2017 *)
  • PARI
    a(n)=n+=2*n+1; if(n%2,n,n/2) \\ Charles R Greathouse IV, Jan 13 2015

Formula

a(n) = A026741(3*n+1).
a(n)*A026741(n) = A005449(n).
a(n)*A022998(n+1) = A000567(n+1).
a(n) = A026741(n+1) + A022998(n).
a(2n) = A016921(n). a(2n+1) = A016789(n).
a(2n+1)*A026741(2n) = A045944(n).
G.f.: (1+2*x+5*x^2+x^3)/((x-1)^2 * (1+x)^2). - R. J. Mathar, Sep 26 2009
a(n) = (3+9*n)/4 + (-1)^n*(1+3*n)/4. - R. J. Mathar, Sep 26 2009
a(n) = 2*(3n+1)/(4-((2n+2) mod 4)). - Bill McEachen, Jan 09 2015
If a(2n-1) = x then a(2n) = 2x+3. - Robert G. Wilson v, Jan 26 2015
Let the reduced Collatz procedure be defined as Cr(n) = (3*n+1)/2. For odd n, a(n) = Cr(n). For even n, a(n) = Cr(4*n+1)/2. - Joe Slater, Nov 29 2016
a(n) = A067745(n+1) * 2^A007814((3n+1)/2). - Joe Slater, Nov 30 2016
a(n) = 2*a(n-2) - a(n-4). - G. C. Greubel, Apr 13 2017

Extensions

All comments changed to formulas by R. J. Mathar, Sep 26 2009
New name from Charles R Greathouse IV, Jan 13 2015
Name corrected by Joe Slater, Nov 29 2016
Previous Showing 21-30 of 72 results. Next