A000567
Octagonal numbers: n*(3*n-2). Also called star numbers.
Original entry on oeis.org
0, 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281, 1408, 1541, 1680, 1825, 1976, 2133, 2296, 2465, 2640, 2821, 3008, 3201, 3400, 3605, 3816, 4033, 4256, 4485, 4720, 4961, 5208, 5461
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 19-20.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 42.
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- John Elias, Illustration: Hexagonal spiral grids based on generalized octagonal numbers; Illustration: Generalized Square-Octagonal Grids.
- John Elias, Illustration: Nesting Cube-frames; Nesting Cube Animation; Nesting-frames Decomposition; Factorial Compartmentalization.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 342.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Table 1.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Kaie Kubjas, Luca Sodomaco, and Elias Tsigaridas, Exact solutions in low-rank approximation with zeros, arXiv:2010.15636 [math.AG], 2020.
- Viktor Levandovskyy, Christoph Koutschan, and Oleksandr Motsak, On Two-generated Non-commutative Algebras Subject to the Affine Relation, arXiv:1108.1108 [cs.SC], 2011.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- Leo Tavares, Illustration: Square Rays.
- Leo Tavares, Illustration: Twin Rectangular Rays.
- Leo Tavares, Illustration: Star Rows.
- Leo Tavares, Illustration: Split Stars.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Octagonal Number.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index to sequences related to polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50], n -> n*(3*n-2)); # G. C. Greubel, Nov 15 2018
-
a000567 n = n * (3 * n - 2) -- Reinhard Zumkeller, Dec 20 2012
-
[n*(3*n-2) : n in [0..50]]; // Wesley Ivan Hurt, Oct 10 2021
-
A000567 := proc(n)
n*(3*n-2) ;
end proc:
seq(A000567(n), n=1..50) ;
-
Table[n (3 n - 2), {n, 0, 50}] (* Harvey P. Dale, May 06 2012 *)
Table[PolygonalNumber[RegularPolygon[8], n], {n, 0, 43}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[8, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 8, 21}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
-
a(n)=n*(3*n-2) \\ Charles R Greathouse IV, Jun 10 2011
-
vector(50, n, n--; n*(3*n-2)) \\ G. C. Greubel, Nov 15 2018
-
# Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 6, y + 6
A000567 = aList()
print([next(A000567) for i in range(49)]) # Peter Luschny, Aug 04 2019
-
[n*(3*n-2) for n in range(50)] # Gennady Eremin, Mar 10 2022
-
[n*(3*n-2) for n in range(50)] # G. C. Greubel, Nov 15 2018
Original entry on oeis.org
0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0
From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
. o
. o o
. o o
. o o o o
. o o o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o
. n=1 n=2 n=3 n=4
(End)
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Francesco Brenti and Paolo Sentinelli, Wachs permutations, Bruhat order and weak order, arXiv:2212.04932 [math.CO], 2022.
- A. J. C. Cunningham, Factorisation of N and N' = (x^n -+ y^n) / (x -+ y) [when x-y=n], Messenger Math., 54 (1924), 17-21. [Incomplete annotated scanned copy]
- Frank Ellermann, Illustration of binomial transforms.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Leo Tavares, Hexagonal illustration
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Eric Weisstein's World of Mathematics, Unit.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
a033428 = (* 3) . (^ 2)
a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
(map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
-- Reinhard Zumkeller, Jul 11 2013
-
[3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
-
seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
-
3 Range[0, 50]^2
LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
-
makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
a(n)=3*n^2
-
def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022
A045944
Rhombic matchstick numbers: a(n) = n*(3*n+2).
Original entry on oeis.org
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
Offset: 0
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Leo Tavares, Illustration: Square Stars
- Leo Tavares, Illustration: Split Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. numbers of the form n*(d*n+10-d)/2:
A008587,
A056000,
A028347,
A140090,
A014106,
A028895,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
-
[n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
-
Table[n*(3n+2), {n,0,60}] (* Harvey P. Dale, May 05 2011 *)
LinearRecurrence[{3,-3,1},{0,5,16},60] (* Harvey P. Dale, Jan 19 2016 *)
CoefficientList[Series[x*(5 + x)/(1 - x)^3,{x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
-
a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
A028896
6 times triangular numbers: a(n) = 3*n*(n+1).
Original entry on oeis.org
0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676
Offset: 0
Joe Keane (jgk(AT)jgk.org), Dec 11 1999
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Leo Tavares, Illustration: Centroid Hexagons.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000217,
A000567,
A003215,
A008588,
A024966,
A028895,
A033996,
A046092,
A049598,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A124080.
Cf.
A002378 (3-cycles in triangular honeycomb acute knight graph),
A045943 (4-cycles),
A152773 (6-cycles).
-
List([0..44],n->3*n*(n+1)); # Muniru A Asiru, Mar 15 2019
-
[3*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, Jun 09 2014
-
[seq(6*binomial(n,2),n=1..44)]; # Zerinvary Lajos, Nov 24 2006
-
6 Accumulate[Range[0, 50]] (* Harvey P. Dale, Mar 05 2012 *)
6 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 27 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 6, 18}, 20] (* Eric W. Weisstein, Jul 27 2017 *)
-
a(n)=3*n*(n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
first(n) = Vec(6*x/(1 - x)^3 + O(x^n), -n) \\ Iain Fox, Feb 14 2018
-
def A028896(n): return 3*n*(n+1) # Chai Wah Wu, Aug 07 2025
A049451
Twice second pentagonal numbers.
Original entry on oeis.org
0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0
Joe Keane (jgk(AT)jgk.org)
From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start)
For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are:
.
X X X X X
4 6 6 6 4
X X X X X
4 6 6 6 4
X X X X X
.
and
.
2 3 3 3 2
X X X X X
4 6 6 6 4
X X X X X
2 3 3 3 2
.
each giving a total of 52. (End)
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Raghavendra N. Bhat, Cristian Cobeli, and Alexandru Zaharescu, A lozenge triangulation of the plane with integers, arXiv:2403.10500 [math.NT], 2024.
- Kival Ngaokrajang, Illustration of 3 points circle center spiral.
- Leo Tavares, Illustration: Double Hexagonal Trapezoids.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Similar sequences are listed in
A316466.
-
List([0..55], n-> n*(3*n+1)); # G. C. Greubel, Sep 01 2019
-
a049451 n = n * (3 * n + 1) -- Reinhard Zumkeller, Jul 07 2012
-
[n*(3*n+1): n in [0..55]]; // G. C. Greubel, Sep 01 2019
-
Table[n(3n+1), {n,0,55}] (* or *) CoefficientList[Series[2x(2+x)/(1-x)^3, {x,0,55}], x] (* Michael De Vlieger, Apr 05 2017 *)
-
a(n)=n*(3*n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(3*n+1) for n in range(60)] # Gennady Eremin, Feb 27 2022
-
[n*(3*n+1) for n in (0..55)] # G. C. Greubel, Sep 01 2019
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A174738
Partial sums of floor(n/7).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0
a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
-
List([0..60], n-> Int((n-2)*(n-3)/14)); # G. C. Greubel, Aug 31 2019
-
[Round(n*(n-5)/14): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
A174738 := proc(n) round(n*(n-5)/14) ; end proc:
seq(A174738(n),n=0..30) ;
-
Table[Floor[(n - 2)*(n - 3)/14], {n,0,60}] (* G. C. Greubel, Dec 13 2016 *)
-
a(n)=(n-2)*(n-3)\14 \\ Charles R Greathouse IV, Sep 24 2015
-
[floor((n-2)*(n-3)/14) for n in (0..60)] # G. C. Greubel, Aug 31 2019
A118729
Rectangular array where row r contains the 8 numbers 4*r^2 - 3*r, 4*r^2 - 2*r, ..., 4*r^2 + 4*r.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168
Offset: 0
Stuart M. Ellerstein (ellerstein(AT)aol.com), May 21 2006
The array starts, with row r=0, as
r=0: 0 0 0 0 0 0 0 0;
r=1: 1 2 3 4 5 6 7 8;
r=2: 10 12 14 16 18 20 22 24;
r=3: 27 30 33 36 39 42 45 48;
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- LeetCode, 3014. Minimum Number of Pushes to Type Word I.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
Flatten[Table[4r^2+r(Range[-3,4]),{r,0,6}]] (* or *) LinearRecurrence[ {2,-1,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,1,2},60] (* Harvey P. Dale, Nov 26 2015 *)
Redefined as a rectangular tabf array and description simplified by
R. J. Mathar, Oct 20 2010
A008724
a(n) = floor(n^2/12).
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192, 200, 208, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 341, 352
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- P. T. Ho, The crossing number of K_{4,n} on the real projective plane, Discr. Math., 304 (2005), pp. 23-33.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 189.
- Eric Weisstein's World of Mathematics, Toroidal Crossing Number.
- Index entries for Molien series.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
A218530
Partial sums of floor(n/11).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0
As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
Showing 1-10 of 14 results.
Comments