cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001399 a(n) is the number of partitions of n into at most 3 parts; also partitions of n+3 in which the greatest part is 3; also number of unlabeled multigraphs with 3 nodes and n edges.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0

Views

Author

Keywords

Comments

Also number of tripods (trees with exactly 3 leaves) on n vertices. - Eric W. Weisstein, Mar 05 2011
Also number of partitions of n+3 into exactly 3 parts; number of partitions of n in which the greatest part is less than or equal to 3; and the number of nonnegative solutions to b + 2c + 3d = n.
Also a(n) gives number of partitions of n+6 into 3 distinct parts and number of partitions of 2n+9 into 3 distinct and odd parts, e.g., 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3. - Jon Perry, Jan 07 2004
Also bracelets with n+3 beads 3 of which are red (so there are 2 possibilities with 5 beads).
More generally, the number of partitions of n into at most k parts is also the number of partitions of n+k into k positive parts, the number of partitions of n+k in which the greatest part is k, the number of partitions of n in which the greatest part is less than or equal to k, the number of partitions of n+k(k+1)/2 into exactly k distinct positive parts, the number of nonnegative solutions to b + 2c + 3d + ... + kz = n and the number of nonnegative solutions to 2c + 3d + ... + kz <= n. - Henry Bottomley, Apr 17 2001
Also coefficient of q^n in the expansion of (m choose 3)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
From Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) for n > 0 is formed by the folding points (including the initial 1). The spiral begins:
.
85--84--83--82--81--80
/ \
86 56--55--54--53--52 79
/ / \ \
87 57 33--32--31--30 51 78
/ / / \ \ \
88 58 34 16--15--14 29 50 77
/ / / / \ \ \ \
89 59 35 17 5---4 13 28 49 76
/ / / / / \ \ \ \ \
90 60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / / /
91 61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
.
a(p) is maximal number of hexagons in a polyhex with perimeter at most 2p + 6. (End)
a(n-3) is the number of partitions of n into 3 distinct parts, where 0 is allowed as a part. E.g., at n=9, we can write 8+1+0, 7+2+0, 6+3+0, 4+5+0, 1+2+6, 1+3+5 and 2+3+4, which is a(6)=7. - Jon Perry, Jul 08 2003
a(n) gives number of partitions of n+6 into parts <=3 where each part is used at least once (subtract 6=1+2+3 from n). - Jon Perry, Jul 03 2004
This is also the number of partitions of n+3 into exactly 3 parts (there is a 1-to-1 correspondence between the number of partitions of n+3 in which the greatest part is 3 and the number of partitions of n+3 into exactly three parts). - Graeme McRae, Feb 07 2005
Apply the Riordan array (1/(1-x^3),x) to floor((n+2)/2). - Paul Barry, Apr 16 2005
Also, number of triangles that can be created with odd perimeter 3,5,7,9,11,... with all sides whole numbers. Note that triangles with even perimeter can be generated from the odd ones by increasing each side by 1. E.g., a(1) = 1 because perimeter 3 can make {1,1,1} 1 triangle. a(4) = 3 because perimeter 9 can make {1,4,4} {2,3,4} {3,3,3} 3 possible triangles. - Bruce Love (bruce_love(AT)ofs.edu.sg), Nov 20 2006
Also number of nonnegative solutions of the Diophantine equation x+2*y+3*z=n, cf. Pólya/Szegő reference.
From Vladimir Shevelev, Apr 23 2011: (Start)
Also a(n-3), n >= 3, is the number of non-equivalent necklaces of 3 beads each of them painted by one of n colors.
The sequence {a(n-3), n >= 3} solves the so-called Reis problem about convex k-gons in case k=3 (see our comment to A032279).
a(n-3) (n >= 3) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with three 1's in every row. (End)
A001399(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w = 2*x+3*y. - Clark Kimberling, Jun 04 2012
Also, for n >= 3, a(n-3) is the number of the distinct triangles in an n-gon, see the Ngaokrajang links. - Kival Ngaokrajang, Mar 16 2013
Also, a(n) is the total number of 5-curve coin patterns (5C4S type: 5 curves covering full 4 coins and symmetry) packing into fountain of coins base (n+3). See illustration in links. - Kival Ngaokrajang, Oct 16 2013
Also a(n) = half the number of minimal zero sequences for Z_n of length 3 [Ponomarenko]. - N. J. A. Sloane, Feb 25 2014
Also, a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of an Octahedral Rotational Energy Surface (cf. Harter & Patterson). - Bradley Klee, Jul 31 2015
Also Molien series for invariants of finite Coxeter groups D_3 and A_3. - N. J. A. Sloane, Jan 10 2016
Number of different distributions of n+6 identical balls in 3 boxes as x,y,z where 0 < x < y < z. - Ece Uslu and Esin Becenen, Jan 11 2016
a(n) is also the number of partitions of 2*n with <= n parts and no part >= 4. The bijection to partitions of n with no part >= 4 is: 1 <-> 2, 2 <-> 1 + 3, 3 <-> 3 + 3 (observing the order of these rules). The <- direction uses the following fact for partitions of 2*n with <= n parts and no part >=4: for each part 1 there is a part 3, and an even number (including 0) of remaining parts 3. - Wolfdieter Lang, May 21 2019
List of the terms in A000567(n>=1), A049450(n>=1), A033428(n>=1), A049451(n>=1), A045944(n>=1), and A003215(n) in nondecreasing order. List of the numbers A056105(n)-1, A056106(n)-1, A056107(n)-1, A056108(n)-1, A056109(n)-1, and A003215(m) with n >= 1 and m >= 0 in nondecreasing order. Numbers of the forms 3n*(n-1)+1, n*(3n-2), n*(3n-1), 3n^2, n*(3n+1), n*(3n+2) with n >= 1 listed in nondecreasing order. Integers m such that lattice points from 1 through m on a hexagonal spiral starting at 1 forms a convex polygon. - Ya-Ping Lu, Jan 24 2024

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 7*x^6 + 8*x^7 + 10*x^8 + 12*x^9 + ...
Recall that in a necklace the adjacent beads have distinct colors. Suppose we have n colors with labels 1,...,n. Two colorings of the beads are equivalent if the cyclic sequences of the distances modulo n between labels of adjacent colors have the same period. If n=4, all colorings are equivalent. E.g., for the colorings {1,2,3} and {1,2,4} we have the same period {1,1,2} of distances modulo 4. So, a(n-3)=a(1)=1. If n=5, then we have two such periods {1,1,3} and {1,2,2} modulo 5. Thus a(2)=2. - _Vladimir Shevelev_, Apr 23 2011
a(0) = 1, i.e., {1,2,3} Number of different distributions of 6 identical balls to 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
a(3) = 3, i.e., {1,2,6}, {1,3,5}, {2,3,4} Number of different distributions of 9 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Jan 11 2016
From _Gus Wiseman_, Apr 15 2019: (Start)
The a(0) = 1 through a(8) = 10 integer partitions of n with at most three parts are the following. The Heinz numbers of these partitions are given by A037144.
  ()  (1)  (2)   (3)    (4)    (5)    (6)    (7)    (8)
           (11)  (21)   (22)   (32)   (33)   (43)   (44)
                 (111)  (31)   (41)   (42)   (52)   (53)
                        (211)  (221)  (51)   (61)   (62)
                               (311)  (222)  (322)  (71)
                                      (321)  (331)  (332)
                                      (411)  (421)  (422)
                                             (511)  (431)
                                                    (521)
                                                    (611)
The a(0) = 1 through a(7) = 8 integer partitions of n + 3 whose greatest part is 3 are the following. The Heinz numbers of these partitions are given by A080193.
  (3)  (31)  (32)   (33)    (322)    (332)     (333)      (3322)
             (311)  (321)   (331)    (3221)    (3222)     (3331)
                    (3111)  (3211)   (3311)    (3321)     (32221)
                            (31111)  (32111)   (32211)    (33211)
                                     (311111)  (33111)    (322111)
                                               (321111)   (331111)
                                               (3111111)  (3211111)
                                                          (31111111)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 5 unlabeled multigraphs with 3 vertices and n edges are the following.
  {}  {12}  {12,12}  {12,12,12}  {12,12,12,12}  {12,12,12,12,12}
            {13,23}  {12,13,23}  {12,13,23,23}  {12,13,13,23,23}
                     {13,23,23}  {13,13,23,23}  {12,13,23,23,23}
                                 {13,23,23,23}  {13,13,23,23,23}
                                                {13,23,23,23,23}
The a(0) = 1 through a(8) = 10 strict integer partitions of n - 6 with three parts are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A007304.
  (321)  (421)  (431)  (432)  (532)  (542)  (543)  (643)   (653)
                (521)  (531)  (541)  (632)  (642)  (652)   (743)
                       (621)  (631)  (641)  (651)  (742)   (752)
                              (721)  (731)  (732)  (751)   (761)
                                     (821)  (741)  (832)   (842)
                                            (831)  (841)   (851)
                                            (921)  (931)   (932)
                                                   (A21)   (941)
                                                           (A31)
                                                           (B21)
The a(0) = 1 through a(8) = 10 integer partitions of n + 3 with three parts are the following. The Heinz numbers of these partitions are given by A014612.
  (111)  (211)  (221)  (222)  (322)  (332)  (333)  (433)  (443)
                (311)  (321)  (331)  (422)  (432)  (442)  (533)
                       (411)  (421)  (431)  (441)  (532)  (542)
                              (511)  (521)  (522)  (541)  (551)
                                     (611)  (531)  (622)  (632)
                                            (621)  (631)  (641)
                                            (711)  (721)  (722)
                                                   (811)  (731)
                                                          (821)
                                                          (911)
The a(0) = 1 through a(8) = 10 integer partitions of n whose greatest part is <= 3 are the following. The Heinz numbers of these partitions are given by A051037.
  ()  (1)  (2)   (3)    (22)    (32)     (33)      (322)      (332)
           (11)  (21)   (31)    (221)    (222)     (331)      (2222)
                 (111)  (211)   (311)    (321)     (2221)     (3221)
                        (1111)  (2111)   (2211)    (3211)     (3311)
                                (11111)  (3111)    (22111)    (22211)
                                         (21111)   (31111)    (32111)
                                         (111111)  (211111)   (221111)
                                                   (1111111)  (311111)
                                                              (2111111)
                                                              (11111111)
The a(0) = 1 through a(6) = 7 strict integer partitions of 2n+9 with 3 parts, all of which are odd, are the following. The Heinz numbers of these partitions are given by A307534.
  (5,3,1)  (7,3,1)  (7,5,1)  (7,5,3)   (9,5,3)   (9,7,3)   (9,7,5)
                    (9,3,1)  (9,5,1)   (9,7,1)   (11,5,3)  (11,7,3)
                             (11,3,1)  (11,5,1)  (11,7,1)  (11,9,1)
                                       (13,3,1)  (13,5,1)  (13,5,3)
                                                 (15,3,1)  (13,7,1)
                                                           (15,5,1)
                                                           (17,3,1)
The a(0) = 1 through a(8) = 10 strict integer partitions of n + 3 with 3 parts where 0 is allowed as a part (A = 10):
  (210)  (310)  (320)  (420)  (430)  (530)  (540)  (640)  (650)
                (410)  (510)  (520)  (620)  (630)  (730)  (740)
                       (321)  (610)  (710)  (720)  (820)  (830)
                              (421)  (431)  (810)  (910)  (920)
                                     (521)  (432)  (532)  (A10)
                                            (531)  (541)  (542)
                                            (621)  (631)  (632)
                                                   (721)  (641)
                                                          (731)
                                                          (821)
The a(0) = 1 through a(7) = 7 integer partitions of n + 6 whose distinct parts are 1, 2, and 3 are the following. The Heinz numbers of these partitions are given by A143207.
  (321)  (3211)  (3221)   (3321)    (32221)    (33221)     (33321)
                 (32111)  (32211)   (33211)    (322211)    (322221)
                          (321111)  (322111)   (332111)    (332211)
                                    (3211111)  (3221111)   (3222111)
                                               (32111111)  (3321111)
                                                           (32211111)
                                                           (321111111)
(End)
Partitions of 2*n with <= n parts and no part >= 4: a(3) = 3 from (2^3), (1,2,3), (3^2) mapping to (1^3), (1,2), (3), the partitions of 3 with no part >= 4, respectively. - _Wolfdieter Lang_, May 21 2019
		

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III, Problem 33.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 110, D(n); page 263, #18, P_n^{3}.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, (4.1.18).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • R. Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
  • J. H. van Lint, Combinatorial Seminar Eindhoven, Lecture Notes Math., 382 (1974), see pp. 33-34.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, Sect. 1, Problem 25.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001399 = p [1,2,3] where
       p _      0 = 1
       p []     _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Magma
    I:=[1,1,2,3,4,5]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
    
  • Magma
    [#RestrictedPartitions(n,{1,2,3}): n in [0..62]]; // Marius A. Burtea, Jan 06 2019
    
  • Magma
    [Round((n+3)^2/12): n in [0..70]]; // Marius A. Burtea, Jan 06 2019
    
  • Maple
    A001399 := proc(n)
        round( (n+3)^2/12) ;
    end proc:
    seq(A001399(n),n=0..40) ;
    with(combstruct):ZL4:=[S,{S=Set(Cycle(Z,card<4))}, unlabeled]:seq(count(ZL4,size=n),n=0..61); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=3)},unlabelled]: seq(combstruct[count](B, size=n), n=0..61); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)), {x, 0, 65} ], x ]
    Table[ Length[ IntegerPartitions[n, 3]], {n, 0, 61} ] (* corrected by Jean-François Alcover, Aug 08 2012 *)
    k = 3; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,2,3,4,5},70] (* Harvey P. Dale, Jun 21 2012 *)
    a[ n_] := With[{m = Abs[n + 3] - 3}, Length[ IntegerPartitions[ m, 3]]]; (* Michael Somos, Dec 25 2014 *)
    k=3 (* Number of red beads in bracelet problem *);CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Apr 15 2019 *)
  • PARI
    {a(n) = round((n + 3)^2 / 12)}; /* Michael Somos, Sep 04 2006 */
    
  • Python
    [round((n+3)**2 / 12) for n in range(0,62)] # Ya-Ping Lu, Jan 24 2024

Formula

G.f.: 1/((1 - x) * (1 - x^2) * (1 - x^3)) = -1/((x+1)*(x^2+x+1)*(x-1)^3); Simon Plouffe in his 1992 dissertation
a(n) = round((n + 3)^2/12). Note that this cannot be of the form (2*i + 1)/2, so ties never arise.
a(n) = A008284(n+3, 3), n >= 0.
a(n) = 1 + a(n-2) + a(n-3) - a(n-5) for all n in Z. - Michael Somos, Sep 04 2006
a(n) = a(-6 - n) for all n in Z. - Michael Somos, Sep 04 2006
a(6*n) = A003215(n), a(6*n + 1) = A000567(n + 1), a(6*n + 2) = A049450(n + 1), a(6*n + 3) = A033428(n + 1), a(6*n + 4) = A049451(n + 1), a(6*n + 5) = A045944(n + 1).
a(n) = a(n-1) + A008615(n+2) = a(n-2) + A008620(n) = a(n-3) + A008619(n) = A001840(n+1) - a(n-1) = A002620(n+2) - A001840(n) = A000601(n) - A000601(n-1). - Henry Bottomley, Apr 17 2001
P(n, 3) = (1/72) * (6*n^2 - 7 - 9*pcr{1, -1}(2, n) + 8*pcr{2, -1, -1}(3, n)) (see Comtet). [Here "pcr" stands for "prime circulator" and it is defined on p. 109 of Comtet, while the formula appears on p. 110. - Petros Hadjicostas, Oct 03 2019]
Let m > 0 and -3 <= p <= 2 be defined by n = 6*m+p-3; then for n > -3, a(n) = 3*m^2 + p*m, and for n = -3, a(n) = 3*m^2 + p*m + 1. - Floor van Lamoen, Jul 23 2001
72*a(n) = 17 + 6*(n+1)*(n+5) + 9*(-1)^n - 8*A061347(n). - Benoit Cloitre, Feb 09 2003
From Jon Perry, Jun 17 2003: (Start)
a(n) = 6*t(floor(n/6)) + (n%6) * (floor(n/6) + 1) + (n mod 6 == 0?1:0), where t(n) = n*(n+1)/2.
a(n) = ceiling(1/12*n^2 + 1/2*n) + (n mod 6 == 0?1:0).
[Here "n%6" means "n mod 6" while "(n mod 6 == 0?1:0)" means "if n mod 6 == 0 then 1, else 0" (as in C).]
(End)
a(n) = Sum_{i=0..floor(n/3)} 1 + floor((n - 3*i)/2). - Jon Perry, Jun 27 2003
a(n) = Sum_{k=0..n} floor((k + 2)/2) * (cos(2*Pi*(n - k)/3 + Pi/3)/3 + sqrt(3) * sin(2*Pi*(n-k)/3 + Pi/3)/3 + 1/3). - Paul Barry, Apr 16 2005
(m choose 3)_q = (q^m-1) * (q^(m-1) - 1) * (q^(m-2) - 1)/((q^3 - 1) * (q^2 - 1) * (q - 1)).
a(n) = Sum_{k=0..floor(n/2)} floor((3 + n - 2*k)/3). - Paul Barry, Nov 11 2003
A117220(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
a(n) = 3 * Sum_{i=2..n+1} floor(i/2) - floor(i/3). - Thomas Wieder, Feb 11 2007
Identical to the number of points inside or on the boundary of the integer grid of {I, J}, bounded by the three straight lines I = 0, I - J = 0 and I + 2J = n. - Jonathan Vos Post, Jul 03 2007
a(n) = A026820(n,3) for n > 2. - Reinhard Zumkeller, Jan 21 2010
Euler transform of length 3 sequence [ 1, 1, 1]. - Michael Somos, Feb 25 2012
a(n) = A005044(2*n + 3) = A005044(2*n + 6). - Michael Somos, Feb 25 2012
a(n) = A000212(n+3) - A002620(n+3). - Richard R. Forberg, Dec 08 2013
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6). - David Neil McGrath, Feb 14 2015
a(n) = floor((n^2+3)/12) + floor((n+2)/2). - Giacomo Guglieri, Apr 02 2019
From Devansh Singh, May 28 2020: (Start)
Let p(n, 3) be the number of 3-part integer partitions in which every part is > 0.
Then for n >= 3, p(n, 3) is equal to:
(n^2 - 1)/12 when n is odd and 3 does not divide n.
(n^2 + 3)/12 when n is odd and 3 divides n.
(n^2 - 4)/12 when n is even and 3 does not divide n.
(n^2)/12 when n is even and 3 divides n.
For n >= 3, p(n, 3) = a(n-3). (End)
a(n) = floor(((n+3)^2 + 4)/12). - Vladimír Modrák, Zuzana Soltysova, Dec 08 2020
Sum_{n>=0} 1/a(n) = 15/4 - Pi/(2*sqrt(3)) + Pi^2/18 + tanh(Pi/(2*sqrt(3)))*Pi/sqrt(3). - Amiram Eldar, Sep 29 2022
E.g.f.: exp(-x)*(9 + exp(2*x)*(47 + 42*x + 6*x^2) + 16*exp(x/2)*cos(sqrt(3)*x/2))/72. - Stefano Spezia, Mar 05 2023
a(6n) = 1+6*A000217(n); Sum_{i=1..n} a(6*i) = A000578(n+1). - David García Herrero, May 05 2024

Extensions

Name edited by Gus Wiseman, Apr 15 2019

A174709 Partial sums of floor(n/6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Partial sums of A152467.

Examples

			a(7) = floor(0/6) + floor(1/6) + floor(2/6) + floor(3/6) + floor(4/6) + floor(5/6) + floor(6/6) + floor(7/6) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 = 2.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-4)/12) = round((2*n^2 - 8*n - 1)/24).
a(n) = floor((n-2)^2/12).
a(n) = ceiling((n+1)*(n-5)/12).
a(n) = a(n-6) + n - 5, n > 5.
From R. J. Mathar, Nov 30 2010: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8).
G.f.: -x^6 / ( (1+x)*(x^2-x+1)*(1+x+x^2)*(x-1)^3 ).
a(n) = -n/3 + 5/72 + n^2/12 + (-1)^n/24 + A057079(n+5)/6 + A061347(n)/18. (End)
a(6n) = A000567(n), a(6n+1) = 2*A000326(n), a(6n+2) = A033428(n), a(6n+3) = A049451(n), a(6n+4) = A045944(n), a(6n+5) = A028896(n). - Philippe Deléham, Mar 26 2013
a(n) = A008724(n-2). - R. J. Mathar, Jul 10 2015
Sum_{n>=6} 1/a(n) = Pi^2/18 - Pi/(2*sqrt(3)) + 49/12. - Amiram Eldar, Aug 13 2022

A008728 Molien series for 3-dimensional group [2,n ] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
Offset: 0

Views

Author

Keywords

Comments

a(n) = A179052(n) for n < 100. - Reinhard Zumkeller, Jun 27 2010

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,12,14];; for n in [13..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^10)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2(1-x^10)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^10))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^10)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+10} floor(j/10).
a(n-10) = (1/2)*floor(n/10)*(2*n - 8 - 10*floor(n/10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A175724 Partial sums of floor(n^2/12).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 39, 51, 65, 81, 99, 120, 144, 171, 201, 234, 270, 310, 354, 402, 454, 510, 570, 635, 705, 780, 860, 945, 1035, 1131, 1233, 1341, 1455, 1575, 1701, 1834, 1974, 2121, 2275, 2436, 2604, 2780, 2964, 3156, 3356
Offset: 0

Views

Author

Mircea Merca, Aug 18 2010

Keywords

Comments

Partial sums of A008724.
Maximum Wiener index of all maximal 6-degenerate graphs with n-2 vertices. (A maximal 6-degenerate graph can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to 6 existing vertices.) The extremal graphs are 6th powers of paths, so the bound also applies to 6-trees. - Allan Bickle, Sep 18 2022

Crossrefs

Cf. A008724.
Maximum Wiener index of all maximal k-degenerate graphs for k=1..6: A000292, A002623, A014125, A122046, A122047, (this sequence).

Programs

  • Magma
    [ &+[ Floor(j^2/12): j in [0..n] ]: n in [0..60] ];
    
  • Maple
    A175724 := proc(n) add( floor(i^2/12) ,i=0..n) ; end proc:
  • Mathematica
    Accumulate[Floor[Range[0, 49]^2/12]]
  • PARI
    vector(61, n, round((2*(n-1)^3 +3*(n-1)^2 -18*(n-1))/72) ) \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    [round((2*n^3 +3*n^2 -18*n)/72) for n in (0..60)] # G. C. Greubel, Dec 05 2019

Formula

a(n) = round((2*n^3 + 3*n^2 - 18*n)/72).
a(n) = a(n-6) + (n-2)*(n-3)/2, n>5.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9), n>8.
G.f.: x^4/((x+1)*(x^2+x+1)*(x^2-x+1)*(x-1)^4).
An explicit formula appears in the Bickle/Che paper.

A008726 Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196, 203, 210, 217, 224, 232, 240, 248, 256, 264, 272, 280
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,10,12];; for n in [11..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^8)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^8), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^8)), {x,0,80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,10,12}, 80] (* Harvey P. Dale, Jan 07 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^8))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008726_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^8))).list()
    A008726_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^8)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+8} floor(j/8).
a(n-8) = (1/2)*floor(n/8)*(2*n-6-8*floor(n/8)). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - R. J. Mathar, Apr 20 2010

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Minor edits by Jon E. Schoenfield, Mar 28 2014

A008727 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into two kinds of 1's and one kind of 9. - Joerg Arndt, Dec 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,11,13];; for n in [12..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
  • Mathematica
    Drop[Accumulate[Floor[Range[70]/9]], 8] (* Jean-François Alcover, Mar 27 2013 *)
    CoefficientList[Series[1/(1-x)^2/(1-x^9), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11,13},120] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    Vec(1/(1-x)^2/(1-x^9)+O(x^66)) /* Joerg Arndt, Mar 27 2013 */
    
  • Sage
    def A008727_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^9))).list()
    A008727_list(70) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^9)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+9} floor(j/9).
a(n-9) = (1/2)*floor(n/9)*(2*n - 7 - 9*floor(n/9)). (End)

A008729 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+11} floor(j/11).
a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)
a(n) = A218530(n+11). - Philippe Deléham, Apr 03 2013
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.
G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A036410 G.f.: (1+x^6)/((1-x)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 6, 7, 9, 11, 12, 15, 17, 19, 22, 25, 27, 31, 34, 37, 41, 45, 48, 53, 57, 61, 66, 71, 75, 81, 86, 91, 97, 103, 108, 115, 121, 127, 134, 141, 147, 155, 162, 169, 177, 185, 192, 201, 209, 217, 226, 235, 243, 253, 262, 271, 281
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + ... - _Michael Somos_, Dec 16 2021
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := Ceiling[(n + 1)^2/12]; (* Michael Somos, Dec 16 2021 *)
  • Maxima
    makelist(coeff(taylor((1+x^6)/((1-x)*(1-x^3)*(1-x^4)),x,0,n),x,n),n,0,57);  /* Bruno Berselli, May 30 2011 */
    
  • PARI
    {a(n) = (n^2 + 2*n)\12 + 1}; /* Michael Somos, Dec 16 2021 */

Formula

a(n) = ceiling((n+1)^2/12).
From R. J. Mathar, Jan 22 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
G.f.: ( -1-x^4+x^2 ) / ( (1+x)*(1+x+x^2)*(x-1)^3 ). (End)
From R. J. Mathar, Jan 14 2021: (Start)
a(n) - a(n-1) = A008612(n).
Empirical: a(n) + a(n+1) = A266542(n).
72*a(n) = 6*n^2 + 12*n + 47 + 9*(-1)^n + 16*A061347(n+1). (End)
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 16 2021

A112421 Number of 6 element subsets of {1,2,3,...,n} for which the sum-set has 12 elements.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 36, 42, 48, 54, 60, 66, 72, 80, 88, 96, 104, 112, 120, 130, 140, 150, 160, 170, 180, 192, 204, 216, 228, 240, 252, 266, 280, 294, 308, 322, 336, 352, 368, 384, 400, 416, 432, 450, 468, 486, 504, 522, 540, 560, 580, 600
Offset: 7

Views

Author

David S. Newman, Dec 10 2005

Keywords

Examples

			a(7)=2 because the two sets {1 2 3 4 5 7} and {1 3 4 5 6 7} have sum-sets
{2 3 4 5 6 7 8 9 10 11 12 14} and {2 4 5 6 7 8 9 10 11 12 13 14}, respectively and each of these sum-sets has 12 elements.
		

Crossrefs

Cf. A008724.

Programs

  • Magma
    I:=[2,4,6,8,10,12,16,20]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-6)-2*Self(n-7)+Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2013
  • Mathematica
    CoefficientList[Series[2/((1 - x)^2 (1 - x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 21 2013 *)
  • PARI
    lista(n) = {my(x = xx + O(xx^n)); gf = 2*x^7/((1-x)^2*(1-x^6)); for (i=7, n-1, print1(polcoeff(gf, i, xx), ", "));} \\ - Michel Marcus, Dec 20 2013
    

Formula

G.f.: 2*x^7/((1-x)^2*(1-x^6)).
a(n) = 2*A008724(n-3). a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8). - R. J. Mathar, Jul 26 2010
a(n) = 2*j*(n-3*j-3), where j=floor(n/6). - Jon E. Schoenfield, Dec 20 2013

Extensions

More terms from Jon E. Schoenfield, Dec 20 2013
Showing 1-10 of 11 results. Next