cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 72 results. Next

A212195 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4038432, ...
  5,  180,   32940,     30847500,      148046704020, ...
  6,  480,  393600,   3312560640,   286170443437440, ...
  7, 1050, 2735250, 123791435250, 97337320223288250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

A140676 a(n) = n*(3*n + 4).

Original entry on oeis.org

0, 7, 20, 39, 64, 95, 132, 175, 224, 279, 340, 407, 480, 559, 644, 735, 832, 935, 1044, 1159, 1280, 1407, 1540, 1679, 1824, 1975, 2132, 2295, 2464, 2639, 2820, 3007, 3200, 3399, 3604, 3815, 4032, 4255, 4484, 4719, 4960, 5207, 5460, 5719, 5984, 6255, 6532, 6815
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

The number of peers of a cell of an n^2 X n^2 sudoku is a(n-1). - Neven Sajko, Apr 20 2016
First differences are in A016921. - Wesley Ivan Hurt, Apr 21 2016

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 4*n.
a(n) = 6*n + a(n-1) + 1 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
O.g.f.: x*(7 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, May 04 2013
E.g.f.: x*(7 + 3*x)*exp(x). - Ilya Gutkovskiy, Apr 20 2016
a(n) = A000567(n+1) - 1. - Neven Sajko, Apr 20 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 15/16 - Pi/(8*sqrt(3)) - 3*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 9/16 - Pi/(4*sqrt(3)). (End)

A140681 a(n) = 3*n*(n+6).

Original entry on oeis.org

0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, 561, 648, 741, 840, 945, 1056, 1173, 1296, 1425, 1560, 1701, 1848, 2001, 2160, 2325, 2496, 2673, 2856, 3045, 3240, 3441, 3648, 3861, 4080, 4305, 4536, 4773, 5016, 5265, 5520, 5781
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A028560(n)*3 = 3*n^2 + 18*n = n*(3*n+18).
a(n) = 6*n + a(n-1) + 15 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
from G. C. Greubel, Jul 20 2017: (Start)
G.f.: 3*x*(7 - 5*x)/(1-x)^3.
E.g.f.: 3*x*(x+7)*exp(x). (End)
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 49/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/1080. (End)

A061045 Numerator of 1/36 - 1/n^2.

Original entry on oeis.org

-35, -2, -1, -5, -11, 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, 253, 2, 325, 91, 5, 28, 493, 5, 589, 40, 77, 187, 805, 2, 925, 247, 13, 70, 1189, 35, 1333, 88, 55, 391, 1645, 4, 1813, 475, 221, 130, 2173, 7, 2365, 154, 95, 667, 2773, 20, 2989, 775, 119, 208, 3445, 11, 3685, 238, 437, 1015, 4189, 10
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Sixth case of Rydberg's formula. From Humphrey's spectrum of hydrogen. See A045944, A000567, A061043, A061046, A061047. - Paul Curtz, Dec 08 2008

Examples

			The fractions are -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, 7/576, 5/324, 4/225, 85/4356, 1/48, 133/6084, 10/441, 7/300, 55/2304, 253/10404, 2/81, 325/12996, ...
		

Crossrefs

A061046 gives denominators.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061045 = numerator . (1 % 36 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Magma
    [Numerator(1/6^2 -1/n^2): n in [1..80]]; // G. C. Greubel, Feb 24 2023
    
  • Mathematica
    Numerator[(1/36-1/Range[100]^2)] (* Harvey P. Dale, Mar 17 2013 *)
  • SageMath
    def A061045(n): return ((n^2-36)/(6*n)^2).numerator()
    [A061045(n) for n in range(1,81)] # G. C. Greubel, Feb 24 2023

A160378 a(n) = n^3 - n*(n+1)/2.

Original entry on oeis.org

0, 0, 5, 21, 54, 110, 195, 315, 476, 684, 945, 1265, 1650, 2106, 2639, 3255, 3960, 4760, 5661, 6669, 7790, 9030, 10395, 11891, 13524, 15300, 17225, 19305, 21546, 23954, 26535, 29295, 32240, 35376, 38709, 42245, 45990, 49950, 54131, 58539
Offset: 0

Views

Author

Gil Broussard, May 11 2009

Keywords

Comments

n-th cube (A000578(n)) minus n-th triangular number (A000217(n)).
Partial sums of A045944. - Vladimir Joseph Stephan Orlovsky, Jun 25 2009
The sum of the n-1 numbers between n^2 and n*(n+1) = a(n). - J. M. Bergot, Apr 15 2013
Use the terms in A061885 to form the antidiagonals for an array. The antidiagonals begin: 0;2,3;6,7,8;12,13,14,15;20,21,22,23,24,25. The sum of the terms in these antidiagonals = a(n)for n > 0. - J. M. Bergot, Jul 08 2013
a(n) is the sum of the n numbers strictly between n^2-n-1 and n^2. - Charlie Marion, Feb 21 2020

Examples

			a(4) = 4^3 - 4*5/2 = 64 - 10 = 54.
		

Crossrefs

Programs

Formula

a(n) = (2*n^3 - n^2 - n)/2. - Vincenzo Librandi, Dec 12 2010; edited by Klaus Brockhaus, Dec 12 2010
From Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: x^2*(5 + x)/(1 - x)^4. (End)
E.g.f.: (x^2/2)*(5 + 2*x)*exp(x). - G. C. Greubel, Oct 14 2023

Extensions

Definition clarified and offset changed from 1 to 0 by Klaus Brockhaus, Dec 12 2010

A165806 a(n) = 15n^2 + 3n + 1.

Original entry on oeis.org

19, 67, 145, 253, 391, 559, 757, 985, 1243, 1531, 1849, 2197, 2575, 2983, 3421, 3889, 4387, 4915, 5473, 6061, 6679, 7327, 8005, 8713, 9451, 10219, 11017, 11845, 12703, 13591, 14509, 15457, 16435, 17443, 18481, 19549, 20647, 21775, 22933, 24121, 25339
Offset: 1

Views

Author

A.K. Devaraj, Sep 28 2009

Keywords

Comments

Polynomials f(x) have the following property: f(x + n*f(x)) is congruent to f(x); here n is an integer.
This can be proved by Taylor's theorem.
After rationalization of the denominator, the quotient q(n,x) = f(x + n*f(x))/f(x) consists of two parts:
a) a rational integer and b) an irrational part.
The present sequence is the integer part for f(x) = x^2 + 3x + 13 and x = sqrt(2), i.e., q(n,x) = a(n) + sqrt(2)*A045944(n).

Examples

			When we substitute sqrt(2) for x in the quadratic expression x^2 + 3x + 13 we get 15 + 3*sqrt(2).
sqrt(2) + (15 + 3*sqrt(2)) = (15 + 4*sqrt(2)). When this is substituted in f(x) we get 270 + 132*sqrt(2).
(270 + 132*sqrt(2))/(15+3*sqrt(2)) = 19 + 5*sqrt(2).
		

Crossrefs

Programs

Formula

G.f.: x*(19 + 10*x + x^2)/(1-x)^3. - R. J. Mathar, Sep 29 2009
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (15*x^2 + 18*x + 1)*exp(x). (End)

Extensions

Definition simplified, sequence extended by R. J. Mathar, Sep 29 2009

A140677 a(n) = n*(3*n + 8).

Original entry on oeis.org

0, 11, 28, 51, 80, 115, 156, 203, 256, 315, 380, 451, 528, 611, 700, 795, 896, 1003, 1116, 1235, 1360, 1491, 1628, 1771, 1920, 2075, 2236, 2403, 2576, 2755, 2940, 3131, 3328, 3531, 3740, 3955, 4176, 4403, 4636, 4875, 5120, 5371, 5628
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Examples

			a(1) = 6*1 + 0 + 5 = 11; a(2) = 6*2 + 11 + 5 = 28; a(3) = 6*3 + 28 + 5 = 51. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 8*n.
a(n) = 6*n + a(n-1) + 5, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(11 - 5*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (3*x^2 + 11*x)*exp(x). - G. C. Greubel, Jul 20 2017

A168244 a(n) = 1 + 3*n - 2*n^2.

Original entry on oeis.org

1, 2, -1, -8, -19, -34, -53, -76, -103, -134, -169, -208, -251, -298, -349, -404, -463, -526, -593, -664, -739, -818, -901, -988, -1079, -1174, -1273, -1376, -1483, -1594, -1709, -1828, -1951, -2078, -2209, -2344, -2483, -2626, -2773, -2924, -3079, -3238, -3401, -3568, -3739, -3914, -4093, -4276, -4463, -4654, -4849
Offset: 0

Views

Author

A.K. Devaraj, Nov 21 2009

Keywords

Comments

Consider the quadratic cyclotomic polynomial f(x) = x^2+x+1 and the quotients f(x + n*f(x))/f(x), as in A168235 and A168240. a(n) is the real part of the quotient at x = 1+sqrt(-5).
The imaginary part of the quotient is sqrt(5)*A045944(n).
As stated in short description of A168244 the quotient is in two parts: rational integers (cf. A168244) and rational integer multiples of sqrt(-5). It so happens that the sequence of rational integer coefficients of sqrt(-5) is A045944. - A.K. Devaraj, Nov 22 2009
This sequence contains half of all integers m such that -8*m +17 is an odd square. The other half are found in A091823 multiplied by -1. The squares resulting from A168244 are (4*n - 3)^2, those from A091823 are (4*n + 3)^2. - Klaus Purath, Jul 11 2021

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 1 + x*(2-7*x+x^2)/(1-x)^3.
a(-n) = -A091823(n), a(0) = 1. - Michael Somos, May 11 2014
E.g.f.: (1 + x - 2*x^2)*exp(x). - G. C. Greubel, Apr 09 2016
a(n) = a(n-2) + (-2)*sqrt((-8)*a(n-1) + 17), n > 1. - Klaus Purath, Jul 08 2021

Extensions

Edited, definition simplified, sequence extended beyond a(5) by R. J. Mathar, Nov 23 2009
a(0)=1 added by N. J. A. Sloane, Apr 09 2016

A187507 T(n,k)=Number of n-step S, E, and NW-moving king's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 5, 0, 16, 16, 6, 0, 25, 33, 31, 2, 0, 36, 56, 74, 36, 0, 0, 49, 85, 135, 115, 40, 0, 0, 64, 120, 214, 236, 184, 36, 0, 0, 81, 161, 311, 399, 435, 272, 20, 0, 0, 100, 208, 426, 604, 788, 772, 330, 12, 0, 0, 121, 261, 559, 851, 1243, 1525, 1224, 390, 6, 0, 0, 144, 320, 710
Offset: 1

Views

Author

R. H. Hardin Mar 10 2011

Keywords

Comments

Table starts
.1.4..9..16...25....36....49....64....81....100....121....144....169....196
.0.5.16..33...56....85...120...161...208....261....320....385....456....533
.0.6.31..74..135...214...311...426...559....710....879...1066...1271...1494
.0.2.36.115..236...399...604...851..1140...1471...1844...2259...2716...3215
.0.0.40.184..435...788..1243..1800..2459...3220...4083...5048...6115...7284
.0.0.36.272..772..1525..2524..3769..5260...6997...8980..11209..13684..16405
.0.0.20.330.1224..2726..4807..7458.10679..14470..18831..23762..29263..35334
.0.0.12.390.1910..4880..9250.14969.22026..30421..40154..51225..63634..77381
.0.0..6.450.2872..8522.17564.29834.45255..63814..85511.110346.138319.169430
.0.0..0.398.3868.13796.31548.56952.89684.129637.176796.231161.292732.361509

Examples

			Some n=4 solutions for 4X4
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....2..0..0..0....0..0..0..0....2..3..4..0
..0..4..2..0....0..3..4..0....3..0..0..0....3..1..0..0....0..1..0..0
..0..0..3..1....0..1..2..0....4..0..0..0....4..2..0..0....0..0..0..0
		

Crossrefs

Row 2 is A045944(n-1)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 3*k^2 - 4*k + 1
Empirical: T(3,k) = 9*k^2 - 20*k + 10 for k>1
Empirical: T(4,k) = 21*k^2 - 68*k + 51 for k>2
Empirical: T(5,k) = 51*k^2 - 208*k + 200 for k>3
Empirical: T(6,k) = 123*k^2 - 600*k + 697 for k>4
Empirical: T(7,k) = 285*k^2 - 1624*k + 2210 for k>5
Empirical: T(8,k) = 669*k^2 - 4316*k + 6681 for k>6
Empirical: T(9,k) = 1569*k^2 - 11252*k + 19434 for k>7
Empirical: T(10,k) = 3603*k^2 - 28504*k + 54377 for k>8

A140678 a(n) = n*(3*n + 10).

Original entry on oeis.org

0, 13, 32, 57, 88, 125, 168, 217, 272, 333, 400, 473, 552, 637, 728, 825, 928, 1037, 1152, 1273, 1400, 1533, 1672, 1817, 1968, 2125, 2288, 2457, 2632, 2813, 3000, 3193, 3392, 3597, 3808, 4025, 4248, 4477, 4712, 4953, 5200, 5453, 5712
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (3 n + 10), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 32}, 50] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    a(n)=n*(3*n+10) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*n^2 + 10*n.
a(n) = 6*n + a(n-1) + 7, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(13 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=13, a(2)=32. - Harvey P. Dale, Jun 05 2012
E.g.f.: (3*x^2 + 13*x)*exp(x). - G. C. Greubel, Jul 20 2017
Previous Showing 31-40 of 72 results. Next