cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 100 results. Next

A061549 Denominator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p=1/4.

Original entry on oeis.org

1, 8, 128, 1024, 32768, 262144, 4194304, 33554432, 2147483648, 17179869184, 274877906944, 2199023255552, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 9223372036854775808, 73786976294838206464, 1180591620717411303424, 9444732965739290427392
Offset: 0

Views

Author

Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001

Keywords

Comments

We observe that b(n) = log(a(n))/log(2) = A120738(n). Furthermore c(n+1) = b(n+1)-b(n) = A090739(n+1) and c(n+1)-3 = A007814(n+1) for n>=0. - Johannes W. Meijer, Jul 06 2009
Using WolframAlpha, it appears that 2*a(n) gives the coefficients of Pi in the denominators of the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022

Examples

			For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The denominator of this term is 8, which is the second term of the sequence.
		

Crossrefs

Bisection of A046161.
Appears in A162448.

Programs

  • Magma
    A061549:= func< n | 2^(4*n-(&+Intseq(2*n, 2))) >;
    [A061549(n): n in [0..30]]; // G. C. Greubel, Oct 20 2024
  • Maple
    seq(denom(binomial(2*n-1/2, -1/2)), n=0..20);
  • Mathematica
    Table[Denominator[(4*n)!/(2^(4*n)*(2*n)!^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 20, print1(denominator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • Python
    import math
    f = math.factorial
    def A061549(n): return (2**(4*n)*f(2*n)**2) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
    
  • Sage
    # uses[A000120]
    def a(n): return 1 << (4*n - A000120(n))
    [a(n) for n in (0..19)]  # Peter Luschny, Dec 02 2012
    

Formula

a(n) = denominator of binomial(2*n-1/2, -1/2).
a(n) are denominators of coefficients of 1/(sqrt(1+x)-sqrt(1-x)) power series. - Benoit Cloitre, Mar 12 2002
a(n) = 16^n/A001316(n). - Paul Barry, Jun 29 2006
a(n) = denom((4*n)!/(2^(4*n)*(2*n)!^2)). - Johannes W. Meijer, Jul 06 2009
a(n) = abs(A067624(n)/A117972(n)). - Johannes W. Meijer, Jul 06 2009

Extensions

More terms from Asher Auel, May 20 2001

A003148 a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 27, 321, 2265, 37575, 390915, 8281665, 114610545, 2946939975, 51083368875, 1542234996225, 32192256321225, 1114841223671175, 27254953356505875, 1064057291370698625, 29845288035840902625, 1296073464766972266375, 41049997128507054562875
Offset: 0

Views

Author

Keywords

Comments

Numerators of sequence of fractions with e.g.f. 1/((1-x)*(1+x)^(1/2)). The denominators are successive powers of 2.
a(n) is the coefficient of x^n in arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) multiplied by (2*n+1)!!.
This sequence is the linking pin between the a(n) formulas of the ED1, ED2, ED3 and ED4 array rows, see A167552, A167565, A167580 and A167591. - Johannes W. Meijer, Nov 23 2009

Examples

			arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) = 1 + 1/3*x + 7/15*x^2 + 9/35*x^3 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003148 n = a003148_list !! n
    a003148_list = 1 : 1 : zipWith (+) (tail a003148_list)
                              (zipWith (*) (tail a002943_list) a003148_list)
    -- Reinhard Zumkeller, Nov 22 2011
    
  • Magma
    [n le 2 select 1 else Self(n-1) + 2*(n-2)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 04 2022
    
  • Maple
    # double factorial of odd "l" df := proc(l) local n; n := iquo(l,2); RETURN( factorial(l)/2^n/factorial(n)); end: x := 1; for n from 1 to 15 do if n mod 2 = 0 then x := 2*n*x+df(2*n-1); else x := 2*n*x-df(2*n-1); fi; print(x); od; quit
  • Mathematica
    a[n_] := a[n] = (-1)^n*(2n - 1)!! + 2n*a[n - 1]; a[0] = 1; Table[ a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 01 2011, after R. J. Mathar *)
    a[ n_] := If[ n < 0, 0, (2 n + 1)!! Hypergeometric2F1[ -n, 1/2, 3/2, 2]]; (* Michael Somos, Apr 20 2018 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / ((1 - 2 x) Sqrt[1 + 2 x]), {x, 0, n}]]; (* Michael Somos, Apr 20 2018 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n+1]==a[n]+2n(2n+1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    Vec(serlaplace(1/(sqrt(1+2*x + O(x^20))*(1-2*x)))) \\ Andrew Howroyd, Feb 05 2018
    
  • SageMath
    @CachedFunction
    def a(n): return 1 if (n<2) else a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) # a = A003148
    [a(n) for n in range(31)] # G. C. Greubel, Nov 04 2022

Formula

a(n) = (-1)^n*(2n-1)!! + 2*n*a(n-1) with (2n-1)!! = 1*3*5*..*(2n-1) the double factorial. - R. J. Mathar, Jun 12 2003
a(n) = ((2*n+1)!!/4) * Integral_{-Pi..Pi} cos(x)^n * cos(x/2) dx. - R. J. Mathar, Jun 30 2003
a(n) = (2n+1)!! 2F1(-n, 1/2;3/2;2). - R. J. Mathar, Jun 30 2003
In terms of the (terminating) Gauss hypergeometric function/series, 2F1(., .; .; 2), a(n) is a special case of the family of integer sequences defined by a(m, n) = ((2*n+2*m+1)!!/(2*m+1)) * 2F1(-n, m+1/2; m+3/2; 2), for m >= 0, n >= 0. An integral form can be seen as a(m, n) = ((2*n+2*m+1)!!/4) * Integral_{-Pi..Pi} (sin(x/2))^(2*m) * (cos(x))^n * cos(x/2) dx. A recurrence property is 4*(n+1)*a(m, n) = (2*m-1)*a(m-1, n+1) + (-1)^n*(2*n+2*m+1)!!. Sequences that have these properties are a(0, n) = this sequence, a(1, n) = A077568, a(2, n) = A084543. - R. J. Mathar, Jun 30 2003
E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)). - Vladeta Jovovic, Oct 12 2003
a(n) = (2^n)*n!*A123746(n)/A046161(n) = (2^n)*n!*Sum_{k=0..n} binomial(2*k,k)*(-1/4)^k. From the e.g.f. - Wolfdieter Lang, Oct 06 2008
a(n) = A049606(n)*A123746(n). - Johannes W. Meijer, Nov 23 2009
a(n) = A091520(n) * n! / 2^n. - Michael Somos, Mar 17 2011

Extensions

a(16)-a(20) from Andrew Howroyd, Feb 05 2018

A004731 a(0) = 1; thereafter a(n) = denominator of (n-2)!! / (n-1)!!.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0

Views

Author

Keywords

Comments

Also numerator of rational part of Haar measure on Grassmannian space G(n,1).
Also rational part of numerator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A036039).
Let x(m) = x(m-2) + 1/x(m-1) for m >= 3, with x(1)=x(2)=1. Then the numerator of x(n+2) equals the denominator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 07 2010, as corrected in Cooper (2015).
Numerator of (n-1)/( (n-2)/( .../1)), with an empty fraction taken to be 1. - Flávio V. Fernandes, Jan 31 2025

Examples

			1, 1, (1/2)*Pi, 2, (3/4)*Pi, 8/3, (15/16)*Pi, 16/5, (35/32)*Pi, 128/35, (315/256)*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), 1/2*Pi^(1/2), 2/Pi^(1/2), 3/4*Pi^(1/2), 8/3/Pi^(1/2), 15/16*Pi^(1/2), 16/5/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A001803, A004730, A006882 (double factorials), A036069.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a004731 0 = 1
    a004731 n = a004731_list !! n
    a004731_list = map numerator ggs where
       ggs = 0 : 1 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
    -- Reinhard Zumkeller, Dec 08 2011
    
  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
    #
    [1, seq(denom(doublefactorial(n-2)/doublefactorial(n-1)), n = 1..36)]; # Peter Luschny, Feb 09 2025
  • Mathematica
    Table[ Denominator[ (n-2)!! / (n-1)!! ], {n, 0, 31}] (* Jean-François Alcover, Jul 16 2012 *)
    Denominator[#[[1]]/#[[2]]&/@Partition[Range[-2,40]!!,2,1]] (* Harvey P. Dale, Nov 27 2014 *)
    Join[{1},Table[Numerator[(n/2-1/2)!/((n/2-1)!Sqrt[Pi])], {n,1,31}]] (* Peter Luschny, Feb 08 2025 *)
  • PARI
    f(n) = prod(i=0, (n-1)\2, n - 2*i); \\ A006882
    a(n) = if (n==0, 1, denominator(f(n-2)/f(n-1))); \\ Michel Marcus, Feb 08 2025
  • Python
    from sympy import gcd, factorial2
    def A004731(n):
        if n <= 1:
            return 1
        a, b = factorial2(n-2), factorial2(n-1)
        return b//gcd(a,b) # Chai Wah Wu, Apr 03 2021
    

Extensions

Name corrected by Michel Marcus, Feb 08 2025

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A273507 T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.

Original entry on oeis.org

6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1

Views

Author

Bradley Klee, May 23 2016

Keywords

Comments

Triangle read by rows ( see example ). The numerator triangle is A274076.
Comments of A273506 give a definition of the fraction triangle, which determines an arbitrary-precision solution to the simple pendulum equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1      2      3     4
------------------------------
1  | 6
2  | 45,    72
3  | 630,   30,    144
4  | 14175, 56700, 3240, 10368
------------------------------
		

Crossrefs

Numerators: A273506. Time Dependence: A274076, A274078, A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[
              Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    RCoefficients[n_] :=  With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
        Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
           Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator@RCoefficients[10]]

A161200 Numerators in expansion of (1-x)^(3/2).

Original entry on oeis.org

1, -3, 3, 1, 3, 3, 7, 9, 99, 143, 429, 663, 4199, 6783, 22287, 37145, 1002915, 1710855, 5892945, 10235115, 71645805, 126233085, 447553665, 797813055, 11435320455, 20583576819, 74417546961, 135054066707, 983965343151, 1798281489207, 6593698793759, 12123897782073
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:5 at page 50.

Crossrefs

Cf. A002596 ((1-x)^(1/2)) and A161202 ((1-x)^(5/2)).
Cf. A161199 (numerators in expansion of (1-x)^(-5/2)).
Cf. A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n).
Cf. A046161 (denominators of the series expansions of (1-x)^(3/2)).

Programs

  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(3/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 26 2016 *)
    a[n_]:= Numerator[3/(3-8*n+4*n^2)*Binomial[2*n,n]/(4^n)]; Array[a,28,0] (* Stefano Spezia, Dec 29 2024 *)

Formula

a(n) = numerator((3/(3-8*n+4*n^2))*binomial(2*n,n)/4^n).

A274076 T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows ( see examples ). The denominators are given in A274078.
The rational triangle A273506 / A273507 gives the coefficients for an exact solution of the plane pendulum's phase space trajectory. Differential time dependence for this solution also adheres to the simple form of a triangular summation: dt = dQ(-1+ sum k^n * (T(n, m)/A274078(n, m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. Expanding powers of cosine ( Cf. A273496 ) it is relatively easy to integrate dt ( cf. A274130 ). One period of motion takes Q through the range [ 0 , -2 pi]. Integrating dt over this domain gives another (Cf. A273506) calculation of the series expansion for Elliptic K ( see examples and Mathematica function dtToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			The triangle T(n, m) begins:
n/m  1    2     3     4
------------------------------
1  | -2
2  |  2, -2
3  | -4,  8,  -20
4  |  2, -58,  14,  -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m    1        2         3       4
------------------------------------------
1  | -2/3
2  |  2/15,   -2/3
3  | -4/315,   8/27,   -20/27
4  |  2/2835, -58/945,  14/27,  -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k +  ((2/15) cos(Q)^6  - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) =  1 + (1/4) k + (9/64) k^2+ ...
		

Crossrefs

Denominators: A274078. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
    Flatten[Numerator[dtCoefficients[10]]]
    dtToEllK[5]

A274078 T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows (see example). Comments of A274076 give a definition of the fraction triangle, which determines to arbitrary precision the differential time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m|    1    2    3    4
---+---------------------
1  |    3;
2  |   15,   3;
3  |  315,  27,  27;
4  | 2835, 945,  27,  81;
		

Crossrefs

Numerators: A274076. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator[dtCoefficients[10]]]

A274130 Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The row length sequence is 2*n = A005843(n), n >= 1.The denominators are given in A274131.
The triangles A274076 and A274078 give the coefficients for the exact, differential time dependence of the plane pendulum's equations of motion. Integrating, we obtain time dependence as a Fourier sine series: t = -( (2/pi)K(k) Q + sum k^n * (T(n,m)/A274131(n,m)) * sin(2 m Q) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3,...,2 n. Combining the phase space trajectory and time dependence, it is possible to express Jacobian elliptic functions {cn,dn} in parametric form. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1     2     3      4    5   6 ...
-----------------------------------------
1  | 1    1
2  | 11   29    1      1
3  | 491  863   6571   4399  13  5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m    1          2           3             4            5         6
-----------------------------------------------------------------------------
1  |  1/6,      1/48
2  |  11/96,    29/960,    1/160,          1/1536
3  |  491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) =  1+(1/4)*k+...
		

Crossrefs

Denominators: A274131. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
    Flatten[Numerator[-tCoefficients[10]]]
    tToEllK[5]

A274131 Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows (see example). The row length sequence is 2*n = A005843(n), n >= 1.
The numerator triangle is A274130.
Comments of A274130 give a definition of the fraction triangle, which determines to arbitrary precision the time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1      2      3          4       5       6
------------------------------------------------------
1  | 6     48
2  | 96    960    160      1536
3  | 5760  30720  725760   1935360  34560   165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
		

Crossrefs

Numerators: A274130. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    Flatten[Denominator[-tCoefficients[10]]]
Previous Showing 21-30 of 100 results. Next