1, 0, 2, 0, 3, 4, 0, 5, 6, 8, 0, 7, 9, 12, 16, 0, 11, 10, 18, 24, 32, 0, 13, 14, 20, 36, 48, 64, 0, 17, 15, 27, 40, 72, 96, 128, 0, 19, 21, 28, 54, 80, 144, 192, 256, 0, 23, 22, 30, 56, 108, 160, 288, 384, 512, 0, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024
Offset: 0
A120041
Number of 10-almost primes k such that 2^n < k <= 2^(n+1).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 8, 22, 47, 103, 233, 487, 1072, 2246, 4803, 10202, 21440, 45115, 94434, 197891, 412010, 858846, 1783610, 3700698, 7665755, 15853990, 32750248, 67564405, 139238488, 286625278, 589472979, 1211146741, 2486322304
Offset: 0
Cf.
A046314,
A036378,
A120033,
A120034,
A120035,
A120036,
A120037,
A120038,
A120039,
A120040,
A120041,
A120042,
A120043.
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
t = Table[AlmostPrimePi[10, 2^n], {n, 0, 39}]; Rest@t - Most@t
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A120041(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
def almostprimepi(n,k): return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
return -almostprimepi(m:=1<Chai Wah Wu, Aug 31 2024
A281222
Products of 10 distinct primes (squarefree 10-almost primes).
Original entry on oeis.org
6469693230, 6915878970, 8254436190, 8720021310, 9146807670, 9592993410, 10407767370, 10485364890, 10555815270, 11125544430, 11532931410, 11797675890, 11823922110, 12095513430, 12328305990, 12598876290, 12929686770, 13162479330, 13220677470, 13467764310
Offset: 1
a(1) = 2*3*5*7*11*13*17*19*23*29 = 6469693230 = prime(10)# = A002110(10), the 10th primorial number.
-
f[om_, lm_ : 0] := Block[{i, j, k, nn, w},
i = Abs[om]; j = 1;
If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]];
w = ConstantArray[1, i];
Union@ Reap[ Do[
While[Set[k, Times @@ Map[Prime, Accumulate@ w]]; k <= nn,
Sow[k]; j = 1; w[[-j]]++];
If[j == i, Break[],
j++; w[[-j]]++; w = PadRight[w[[;; -j]], i, 1] ],
{n, Infinity}] ][[-1, 1]] ];
f[10, 10^11] (* Michael De Vlieger, Apr 19 2025 *)
-
IsInA281222(n) = n > 0 && issquarefree(n) && bigomega(n) == 10
-
list(lim,pr=10,maxp=lim\vecprod(primes(pr-1)))=if(pr==1, return(primes([2,min(lim\1,maxp)]))); my(v=List(), pr1=pr-1, mx=prod(i=1, pr1, prime(i))); forprime(p=prime(pr), min(lim\mx,maxp), my(u=list(lim\p, pr1, p-1)); for(i=1, #u, listput(v, p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023; corrected by David A. Corneth, Jul 22 2025
-
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A281222(n):
def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,10)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 29 2024
A125149
a(n) is the least k such that the n-almost prime count is positive and equal to the (n-1)-almost prime count. a(0) = 1.
Original entry on oeis.org
1, 2, 10, 15495, 151165506066
Offset: 0
a(1) = 2 since 1 has no prime factors and 2 has one prime factor, therefore prime factor counts of 0 and 1 occur equally often in the first 2 integers.
a(2) = 10 since there are 4 primes {2, 3, 5 & 7} and 4 semiprimes {4, 6, 9 & 10} less than or equal to 10.
a(4) = 151165506066 since there are 32437255807 4-almost primes and 3-almost primes <= a(4).
Sequences listing r-almost primes, that is, k such that
A001222(k) = r:
A000040 (r = 1),
A001358 (r = 2),
A014612 (r = 3),
A014613 (r = 4),
A014614 (r = 5),
A046306 (r = 6),
A046308 (r = 7),
A046310 (r = 8),
A046312 (r = 9),
A046314 (r = 10),
A069272 (r = 11),
A069273 (r = 12),
A069274 (r = 13),
A069275 (r = 14),
A069276 (r = 15),
A069277 (r = 16),
A069278 (r = 17),
A069279 (r = 18),
A069280 (r = 19),
A069281 (r = 20).
-
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
f[n_] := Block[{k = 2^n}, While[AlmostPrimePi[n, k] < AlmostPrimePi[n - 1, k], k++ ]; k];
Changed 33 to 34 in a comment. -
T. D. Noe, Aug 11 2010
A046336
Palindromes with exactly 10 prime factors (counted with multiplicity).
Original entry on oeis.org
8448, 40704, 42624, 46464, 63936, 65856, 69696, 234432, 255552, 297792, 426624, 639936, 2152512, 2300032, 2327232, 2346432, 2570752, 2726272, 2741472, 2783872, 2939392, 2996992, 4072704, 4209024, 4266624, 4811184, 4897984, 6129216, 6167616, 6186816, 6334336
Offset: 1
-
Select[Range[2, 10000000], IntegerDigits[ # ] == Reverse[IntegerDigits[ # ]] && Plus @@ Transpose[FactorInteger[ # ]][[2]] == 10 &] (* Tanya Khovanova, Sep 07 2007 *)
A101745
Indices of triangular numbers which are 10-almost primes. Indices of A101744.
Original entry on oeis.org
255, 384, 511, 575, 639, 728, 767, 896, 1088, 1295, 1376, 1407, 1599, 1700, 1727, 1792, 1919, 1920, 2015, 2024, 2375, 2431, 2672, 2815, 2880, 2915, 2944, 2975, 3104, 3159, 3199, 3327, 3375, 3392, 3456, 3583, 3744, 3999, 4031, 4032, 4160, 4223, 4256
Offset: 1
a(1) = 255 because that is the smallest index of a triangular number which is also a 10-almost prime; specifically T(255) = 255*(255+1)/2 = 32640 = 2^7 * 3 * 5 * 17.
-
F:=List([1..4300],n->Length(Factors(n*(n+1)/2)));; a:=Filtered([1..Length(F)],i->F[i]=10); # Muniru A Asiru, Dec 22 2018
-
[n: n in [2..4500] | &+[d[2]: d in Factorization((n*(n+1)))] eq 11]; // Vincenzo Librandi, Dec 22 2018
-
BigOmega[n_Integer]:=Plus@@Last[Transpose[FactorInteger[n]]]; Do[ t=n*(n+1)/2; If[BigOmega[t]==10, Print[n, " ", t];];, {n, 2, 5000}]; (* Ray Chandler, Dec 14 2004 *)
Flatten[Position[Accumulate[Range[5000]],?(PrimeOmega[#]==10&)]] (* _Harvey P. Dale, May 12 2011 *)
Comments