A257612
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 24, 4, 8, 184, 184, 8, 16, 1216, 3680, 1216, 16, 32, 7584, 53824, 53824, 7584, 32, 64, 46208, 674752, 1507072, 674752, 46208, 64, 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128, 256, 1677312, 84892672, 636233728, 1196803584, 636233728, 84892672, 1677312, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 24, 4;
8, 184, 184, 8;
16, 1216, 3680, 1216, 16;
32, 7584, 53824, 53824, 7584, 32;
64, 46208, 674752, 1507072, 674752, 46208, 64;
128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,4,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
f(x) = 4*x + 2;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
def T(n,k,a,b): # A257612
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,4,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A051617
a(n) = (4*n+5)(!^4)/5(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 9, 117, 1989, 41769, 1044225, 30282525, 999323325, 36974963025, 1515973484025, 68218806781125, 3342721532275125, 177164241210581625, 10098361749003152625, 616000066689192310125, 40040004334797500158125
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(9/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(9/4))) \\ G. C. Greubel, Aug 15 2018
A225471
Triangle read by rows, s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 1, 21, 10, 1, 231, 131, 21, 1, 3465, 2196, 446, 36, 1, 65835, 45189, 10670, 1130, 55, 1, 1514205, 1105182, 290599, 36660, 2395, 78, 1, 40883535, 31354119, 8951355, 1280419, 101325, 4501, 105, 1, 1267389585, 1012861224, 308846124, 48644344, 4421494, 240856, 7756, 136, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 3, 1,
[2] 21, 10, 1,
[3] 231, 131, 21, 1,
[4] 3465, 2196, 446, 36, 1,
[5] 65835, 45189, 10670, 1130, 55, 1,
[6] 1514205, 1105182, 290599, 36660, 2395, 78, 1.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (4*4 - 1)*T(3, 2) = 131 +15*21 = 446.
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(4*(3+8*(5/12)) *T(2, 2)/2! + 1*(3 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(4*(19/3)/2 + 7*21/3!) = 446.
(End)
-
T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n - j, k]*Abs[StirlingS1[n, n - j]]* 3^(n - k - j)*4^j, {j, 0, n - k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Wolfdieter Lang *)
-
@CachedFunction
def SF_C(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m)
for n in (0..8): [SF_C(n, k, 4) for k in (0..n)]
A051618
a(n) = (4*n+6)(!^4)/6(!^4).
Original entry on oeis.org
1, 10, 140, 2520, 55440, 1441440, 43243200, 1470268800, 55870214400, 2346549004800, 107941254220800, 5397062711040000, 291441386396160000, 16903600410977280000, 1048023225480591360000, 69169532881719029760000, 4841867301720332083200000, 358298180327304574156800000
Offset: 0
-
[Factorial(2*n+4)/(12*Factorial(n+2)): n in [0..100]]; // Vincenzo Librandi, Jul 04 2015
-
seq(mul((n+2+k), k=1..n+2)/12, n=0..17); # Zerinvary Lajos, Feb 15 2008
A051618 := n -> 2^n*(n+1)!*JacobiP(n+1, 1/2, -(n+1), 3)/3:
seq(simplify(A051618(n)), n = 0..19); # Peter Luschny, Jan 22 2025
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 9, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
f[n_] := (2n + 4)!/(12(n + 2)!); Array[f, 16, 0] (* Or *)
FoldList[ #2*#1 &, 1, Range[10, 66, 4]] (* Robert G. Wilson v *)
With[{nn=20},CoefficientList[Series[1/(1-4x)^(5/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 24 2015 *)
Table[(Product[(4*k + 6), {k, 0, n}])/6, {n, 0, 50}] (* G. C. Greubel, Jan 27 2017 *)
-
A051618(n):=(2*n+4)!/(12*(n+2)!)$
makelist(A051618(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
for(n=0,25, print1((2*n+3)!/(6*(n+1)!), ", ")) \\ G. C. Greubel, Jan 27 2017
A051622
a(n) = (4*n+10)(!^4)/10(!^4), related to A000407 ((4*n+2)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 14, 252, 5544, 144144, 4324320, 147026880, 5587021440, 234654900480, 10794125422080, 539706271104000, 29144138639616000, 1690360041097728000, 104802322548059136000, 6916953288171902976000, 484186730172033208320000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(14/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
seq(mul((n+3+k), k=1..n+3)/120, n=0..18); # Zerinvary Lajos, Feb 15 2008
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(7/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(14/4))) \\ G. C. Greubel, Aug 15 2018
A225118
Triangle read by rows, coefficients of the generalized Eulerian polynomials A_{n, 4}(x) in descending order.
Original entry on oeis.org
1, 3, 1, 9, 22, 1, 27, 235, 121, 1, 81, 1996, 3446, 620, 1, 243, 15349, 63854, 40314, 3119, 1, 729, 112546, 963327, 1434812, 422087, 15618, 1, 2187, 806047, 12960063, 37898739, 26672209, 4157997, 78117, 1, 6561, 5705752, 162711868, 840642408, 1151050534
Offset: 0
[0] 1
[1] 3*x + 1
[2] 9*x^2 + 22*x + 1
[3] 27*x^3 + 235*x^2 + 121*x + 1
[4] 81*x^4 + 1996*x^3 + 3446*x^2 + 620*x + 1
...
The triangle T(n, k) begins:
n\k
0: 1
1: 3 1
2: 9 22 1
3: 27 235 121 1
4: 81 1996 3446 620 1
5: 243 15349 63854 40314 3119 1
6: 729 112546 963327 1434812 422087 15618 1
7: 2187 806047 12960063 37898739 26672209 4157997 78117 1
...
row n=8: 6561 5705752 162711868 840642408 1151050534 442372648 39531132 390616 1,
row n=9: 19683 40156777 1955297356 16677432820 39523450714 29742429982 6818184988 367889284 1953115 1.
... - _Wolfdieter Lang_, Apr 12 2017
-
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(print(seq(coeff(gf(n, 4), x, n-k), k=0..n)), n=0..6);
# Recurrence:
P := proc(n,x) option remember; if n = 0 then 1 else
(n*x+(1/4)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
expand(%) fi end:
A225117 := (n,k) -> 4^n*coeff(P(n,x),x,n-k):
seq(print(seq(A225117(n,k), k=0..n)), n=0..5); # Peter Luschny, Mar 08 2014
-
gf[n_, k_] := Module[{f, s}, f[x_, t_] := x*Exp[t*x/k]/(1-x*Exp[t*x]); s = Series[f[x, t], {t, 0, n+2}]; ((1-x)/x)^(n+1)*k^n*n!*SeriesCoefficient[s, {t, 0, n}]]; Table[Table[SeriesCoefficient[gf[n, 4], {x, 0, n-k}], {k, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 27 2014, after Maple *)
-
@CachedFunction
def EB(n, k, x): # Modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= 1) else 1
return k*x*EB(n-1, k, x) + k*(n-x)*EB(n-1, k, x-1)
def EulerianPolynomial(n, k): # Generalized Eulerian polynomials
R. = ZZ[]
if x == 0: return 1
return add(EB(n+1, k, m+1/k)*x^m for m in (0..n))
[EulerianPolynomial(n, 4).coefficients()[::-1] for n in (0..5)]
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A087299
Ratio of volume of n-dimensional ball to circumscribing n-cube is Pi^floor(n/2) divided by a(n).
Original entry on oeis.org
1, 1, 4, 6, 32, 60, 384, 840, 6144, 15120, 122880, 332640, 2949120, 8648640, 82575360, 259459200, 2642411520, 8821612800, 95126814720, 335221286400, 3805072588800, 14079294028800, 167423193907200, 647647525324800
Offset: 0
The volume of sphere (3-ball) is 4/3*Pi*r^3 and circumscribing 3-cube is 2^3*r^3 so ratio is Pi/6 and a(3)=6.
G.f. = 1 + x + 4*x^2 + 6*x^3 + 32*x^4 + 60*x^5 + 384*x^6 + 840*x^7 + ...
- N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
-
a[ n_] := If[ n < 0, 0, With[ {m = n + 1}, m! SeriesCoefficient[ Exp[x^2] (1 + Sqrt[Pi] Erf[x]), {x, 0, m}] / 2]]; (* Michael Somos, Jan 24 2014 *)
Table[2^n*Gamma[n/2 + 1]*Pi^Floor[n/2]/Pi^(n/2), {n,0,50}] (* G. C. Greubel, Jan 28 2017 *)
-
{a(n) = my(A); if( n<0, 0, n++; A = exp(x^2 + x * O(x^n)); n! * polcoeff( A * (1 + 2 * intformal( 1/A )), n) / 2)}; /* Michael Somos, May 25 2004 */
-
{a(n) = if( n<2, n>-1, 2*n * a(n-2))}; /* Michael Somos, Jan 24 2014 */
-
{a(n) = if( n<0, 0, if( n%2, n! / (n\2)!, 2^n * (n\2)!))}; /* Michael Somos, Jan 03 2015 */
A144829
Partial products of successive terms of A017209; a(0)=1 .
Original entry on oeis.org
1, 4, 52, 1144, 35464, 1418560, 69509440, 4031547520, 270113683840, 20528639971840, 1744934397606400, 164023833375001600, 16894454837625164800, 1892178941814018457600, 228953651959496233369600, 29763974754734510338048000, 4137192490908096936988672000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*13=52, a(3)=4*13*22=1144, a(4)=4*13*22*31=35464, ...
-
[n le 2 select 4^(n-1) else (9*n-14)*Self(n-1): n in [1..30]]; // G. C. Greubel, May 26 2022
-
Table[4*9^(n-1)*Pochhammer[13/9, n-1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 29 2021 *)
-
a(n) = (-5)^n*sum(k=0, n, (9/5)^k*stirling(n+1,n+1-k, 1)); \\ Michel Marcus, Feb 20 2015
-
[9^n*rising_factorial(4/9, n) for n in (0..30)] # G. C. Greubel, May 26 2022
a(9) originally given incorrectly as 20520639971840 corrected by
Peter Bala, Feb 20 2015
A167569
The lower left triangle of the ED2 array A167560.
Original entry on oeis.org
1, 2, 4, 6, 16, 32, 24, 80, 192, 384, 120, 480, 1344, 3072, 6144, 720, 3360, 10752, 27648, 61440, 122880, 5040, 26880, 96768, 276480, 675840, 1474560, 2949120, 40320, 241920, 967680, 3041280, 8110080, 19169280, 41287680, 82575360
Offset: 1
The first few triangle rows are:
[1]
[2, 4]
[6, 16, 32]
[24, 80, 192, 384]
[120, 480, 1344, 3072, 6144]
[720, 3360, 10752, 27648, 61440, 122880]
-
a := proc(n, m): 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 23 2012
-
Flatten[Table[4^(m - 1)*(m - 1)!*(n + m - 1)!/(2*m - 1)!, {n, 1, 50}, {m, n}]] (* G. C. Greubel, Jun 16 2016 *)
Comments