A051232
9-factorial numbers.
Original entry on oeis.org
1, 9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, 12652843234348800, 1252631480200531200, 135284199861657369600, 15828251383813912243200, 1994359674360552942643200, 269238556038674647256832000
Offset: 0
-
[9^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$9))},labeled]: seq(count(A,size=n+1)/9, n=0..14); # Zerinvary Lajos, Dec 05 2007
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
A257625
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 6*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 54, 9, 27, 621, 621, 27, 81, 6156, 18630, 6156, 81, 243, 57591, 408726, 408726, 57591, 243, 729, 526338, 7685847, 17166492, 7685847, 526338, 729, 2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, ...;
3, 54, 621, 6156, 57591, ...;
9, 621, 18630, 408726, 7685847, ...;
27, 6156, 408726, 17166492, 568014201, ...;
81, 57591, 7685847, 568014201, 30672766854, ...;
243, 526338, 132656859, 16305974568, 1366261865802, ...;
729, 4765473, 2175706332, 427278012876, 53552912878818, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 54, 9;
27, 621, 621, 27;
81, 6156, 18630, 6156, 81;
243, 57591, 408726, 408726, 57591, 243;
729, 526338, 7685847, 17166492, 7685847, 526338, 729;
2187, 4765473, 132656859, 568014201, 568014201, 132656859, 4765473, 2187;
See similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,6,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257625(n,k): return t(n-k,k,6,3)
flatten([[A257625(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A053101
a(n) = ((6*n+8)(!^6))/8(!^6), related to A034689 (((6*n+2)(!^6))/2 sextic, or 6-factorials).
Original entry on oeis.org
1, 14, 280, 7280, 232960, 8852480, 389509120, 19475456000, 1090625536000, 67618783232000, 4598077259776000, 340257717223424000, 27220617377873920000, 2340973094497157120000, 215369524693738455040000
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100, this sequence,
A053102,
A053103 (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(7/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
A051151
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
Offset: 1
Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-6, 1;
72, -18, 1;
-1296, 396, -36, 1;
31104, -10800, 1260, -60, 1;
-933120, 355104, -48600, 3060, -90, 1;
...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are first introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77. [Special cases of the numbers R_n^m(a,b) are tabulated.]
First (m=1) column sequence is:
A047058(n-1).
Row sums (signed triangle):
A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A008542(n).
A053103
a(n) = ((6*n+10)(!^6))/10(!^6), related to A034724 (((6*n+4)(!^6))/4 sextic, or 6-factorials).
Original entry on oeis.org
1, 16, 352, 9856, 335104, 13404160, 616591360, 32062750720, 1859639541760, 119016930672640, 8331185147084800, 633170071178444800, 51919945836632473600, 4568955233623657676800, 429481791960623821619200
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100,
A053101,
A053102, this sequence (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 15, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(16/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(8/3))) \\ G. C. Greubel, Aug 16 2018
A051262
10-factorial numbers.
Original entry on oeis.org
1, 10, 200, 6000, 240000, 12000000, 720000000, 50400000000, 4032000000000, 362880000000000, 36288000000000000, 3991680000000000000, 479001600000000000000, 62270208000000000000000
Offset: 0
a(n) =
A048176(n+1, 0)*(-1)^n (first column of unsigned triangle).
-
[10^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$10))},labeled]: seq(count(A,size=n)/10,n=0..14); # Zerinvary Lajos, Dec 05 2007
-
Array[#!*10^# &, 14, 0] (* Michael De Vlieger, Sep 04 2017 *)
A053100
a(n) = ((6*n+7)(!^6))/7, related to A008542 ((6*n+1)(!^6) sextic, or 6-factorials).
Original entry on oeis.org
1, 13, 247, 6175, 191425, 7082725, 304557175, 14923301575, 820781586625, 50067676784125, 3354534344536375, 244881007151155375, 19345599564941274625, 1644375963020008343125, 149638212634820759224375
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1), this sequence,
A053101,
A053102,
A053103 (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(13/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn=20},CoefficientList[Series[1/(1-6x)^(13/6),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 20 2015 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(13/6))) \\ G. C. Greubel, Aug 15 2018
A053102
a(n) = ((6*n+9)(!^6))/9(!^6), related to A034723 (((6*n+3)(!^6))/3 sextic, or 6-factorials).
Original entry on oeis.org
1, 15, 315, 8505, 280665, 10945935, 492567075, 25120920825, 1431892487025, 90209226682575, 6224436641097675, 466832748082325625, 37813452594668375625, 3289770375736148679375, 305948644943461827181875
Offset: 0
Cf.
A047058,
A008542(n+1),
A034689(n+1),
A034723(n+1),
A034724(n+1),
A034787(n+1),
A034788(n+1),
A053100,
A053101, this sequence,
A053103 (rows m=0..10).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-6*x)^(15/6))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 5!, 6}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 6*x)^(15/6), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-6*x)^(15/6))) \\ G. C. Greubel, Aug 15 2018
A196347
Triangle T(n, k) read by rows, T(n, k) = n!*binomial(n, k).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 144, 96, 24, 120, 600, 1200, 1200, 600, 120, 720, 4320, 10800, 14400, 10800, 4320, 720, 5040, 35280, 105840, 176400, 176400, 105840, 35280, 5040, 40320, 322560, 1128960, 2257920, 2822400, 2257920, 1128960, 322560, 40320
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 2;
6, 18, 18, 6;
24, 96, 144, 96, 24;
120, 600, 1200, 1200, 600, 120;
...
- G. C. Greubel, Table of n, a(n) for n = 0..495
- P. Bala, Deformations of the Hadamard product of power series
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
-
/* As triangle */ [[Factorial(n)*Binomial(n, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 28 2015
-
Table[n!*Binomial[n, j], {n, 0, 30}, {j, 0, n}] (* G. C. Greubel, Sep 27 2015 *)
-
factorial(n)*binomial(n,k) # Danny Rorabaugh, Sep 27 2015
A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
-
T:= (n,k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
-
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
Comments