cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A077221 a(0) = 0 and then alternately even and odd numbers in increasing order such that the sum of any two successive terms is a square.

Original entry on oeis.org

0, 1, 8, 17, 32, 49, 72, 97, 128, 161, 200, 241, 288, 337, 392, 449, 512, 577, 648, 721, 800, 881, 968, 1057, 1152, 1249, 1352, 1457, 1568, 1681, 1800, 1921, 2048, 2177, 2312, 2449, 2592, 2737, 2888, 3041, 3200, 3361, 3528, 3697, 3872, 4049, 4232
Offset: 0

Views

Author

Amarnath Murthy, Nov 03 2002

Keywords

Comments

This sequence arises from reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 8, ..., in the square spiral whose vertices are the triangular numbers A000217. Cf. A139591, etc. - Omar E. Pol, May 03 2008
The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=2, thus a(k) = |(P(2,0)-(-1)^k*P(2,2*k))/2|. - Peter Luschny, Jul 12 2009
Axis perpendicular to A046092 in the square spiral whose vertices are the triangular numbers A000217. See the comment above. - Omar E. Pol, Sep 14 2011
Column 8 of A195040. - Omar E. Pol, Sep 28 2011
Concentric octagonal numbers. A139098 and A069129 interleaved. - Omar E. Pol, Sep 17 2011
Subsequence of A194274. - Bruno Berselli, Sep 22 2011
Partial sums of A047522. - Reinhard Zumkeller, Jan 07 2012
Alternating sum of the first n odd squares in decreasing order, n >= 1. Also number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton. The rules are: on the infinite square grid, start with all cells OFF, so a(0) = 0. Turn a single cell to the ON state, so a(1) = 1. At each subsequent step, the neighbor cells of each cell of the old generation are turned ON, and the cells of the old generation are turned OFF. Here "neighbor" refers to the eight adjacent cells of each ON cell. See example. - Omar E. Pol, Feb 16 2014

Examples

			From _Omar E. Pol_, Feb 16 2014: (Start)
Illustration of initial terms as a cellular automaton:
.
.                                   O O O O O O O
.                     O O O O O     O           O
.           O O O     O       O     O   O O O   O
.     O     O   O     O   O   O     O   O   O   O
.           O O O     O       O     O   O O O   O
.                     O O O O O     O           O
.                                   O O O O O O O
.
.     1       8           17              32
.
(End)
		

Crossrefs

Programs

Formula

a(2n) = 8*n^2, a(2n+1) = 8*n(n+1) + 1.
From Ralf Stephan, Mar 31 2003: (Start)
a(n) = 2*n^2 + 4*n + 1 [+1 if n is odd] with a(0)=1.
G.f.: x*(x^2+6*x+1)/(1-x)^3/(1+x). (End)
Row sums of triangle A131925; binomial transform of (1, 7, 2, 4, -8, 16, -32, ...). - Gary W. Adamson, Jul 29 2007
a(n) = a(-n); a(n+1) = A195605(n) - (-1)^n. - Bruno Berselli, Sep 22 2011
a(n) = 2*n^2 + ((-1)^n-1)/2. - Omar E. Pol, Sep 28 2011
Sum_{n>=1} 1/a(n) = Pi^2/48 + tan(Pi/(2*sqrt(2)))*Pi /(4*sqrt(2)). - Amiram Eldar, Jan 16 2023

Extensions

Extended by Ralf Stephan, Mar 31 2003

A090771 Numbers that are congruent to {1, 9} mod 10.

Original entry on oeis.org

1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 81, 89, 91, 99, 101, 109, 111, 119, 121, 129, 131, 139, 141, 149, 151, 159, 161, 169, 171, 179, 181, 189, 191, 199, 201, 209, 211, 219, 221, 229, 231, 239, 241, 249, 251, 259, 261, 269, 271, 279, 281
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 10). - Bruno Berselli, Nov 17 2010

Crossrefs

Cf. A056020 (n = 1 or 8 mod 9), A175885 (n = 1 or 10 mod 11).
Cf. A045468 (primes), A195142 (partial sums).

Programs

Formula

a(n) = sqrt(40*A057569(n) + 1). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Sep 16 2010 - Nov 17 2010: (Start)
G.f.: x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = (10*n + 3*(-1)^n - 5)/2.
a(n) = -a(-n + 1) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 10.
a(n) = 10*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 10*n - a(n-1) - 10 (with a(1) = 1). - Vincenzo Librandi, Nov 16 2010
a(n) = sqrt(10*A132356(n-1) + 1). - Ivan N. Ianakiev, Nov 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/10)*cot(Pi/10) = A000796 * A019970 / 10 = sqrt(5 + 2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((10*x - 5)*exp(x) + 3*exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(phi+2) (A188593).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi*phi/5 = A094888/10. (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A047336 Numbers that are congruent to {1, 6} mod 7.

Original entry on oeis.org

1, 6, 8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43, 48, 50, 55, 57, 62, 64, 69, 71, 76, 78, 83, 85, 90, 92, 97, 99, 104, 106, 111, 113, 118, 120, 125, 127, 132, 134, 139, 141, 146, 148, 153, 155, 160, 162, 167, 169, 174, 176, 181, 183, 188, 190, 195, 197, 202, 204, 209
Offset: 1

Views

Author

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 7). - Bruno Berselli, Nov 17 2010

Crossrefs

Programs

  • Haskell
    a047336 n = a047336_list !! (n-1)
    a047336_list = 1 : 6 : map (+ 7) a047336_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..210]| n mod 7 in {1,6}]; // Bruno Berselli, Feb 22 2011
    
  • Mathematica
    Rest[Flatten[Table[{7i-1,7i+1},{i,0,40}]]] (* Harvey P. Dale, Nov 20 2010 *)
  • PARI
    a(n)=n\2*7-(-1)^n \\ Charles R Greathouse IV, May 02 2016

Formula

a(1) = 1; a(n) = 7(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 (corrected by Jon E. Schoenfield, Dec 22 2008)
a(n) = (7/2)*(n-(1-(-1)^n)/2) - (-1)^n. - Rolf Pleisch, Nov 02 2010
From Bruno Berselli, Nov 17 2010: (Start)
G.f.: x*(1+5*x+x^2)/((1+x)*(1-x)^2).
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = a(n-2)+7.
a(n) = 7*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 7*floor(n/2)+(-1)^(n+1). - Gary Detlefs, Dec 29 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/7)*cot(Pi/7) = A019674 * A178818. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 3*exp(-x))/4. - David Lovler, Sep 01 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/7) (A160389).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/7) * cosec(Pi/7) (A371858). (End)

Extensions

More terms from Jon E. Schoenfield, Jan 18 2009

A113801 Numbers that are congruent to {1, 13} mod 14.

Original entry on oeis.org

1, 13, 15, 27, 29, 41, 43, 55, 57, 69, 71, 83, 85, 97, 99, 111, 113, 125, 127, 139, 141, 153, 155, 167, 169, 181, 183, 195, 197, 209, 211, 223, 225, 237, 239, 251, 253, 265, 267, 279, 281, 293, 295, 307, 309, 321, 323, 335, 337, 349, 351, 363, 365, 377, 379
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

If 14k+1 is a perfect square..(0,12,16,52,60,120..) then the square root of 14k+1 = a(n) - Gary Detlefs, Feb 22 2010
More generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in our case, a(n)^2-1==0 (mod 14). Also a(n)^2-1==0 (mod 28). - Bruno Berselli, Oct 26 2010 - Nov 17 2010

Crossrefs

Programs

  • Haskell
    a113801 n = a113801_list !! (n-1)
    a113801_list = 1 : 13 : map (+ 14) a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=n\2*14-(-1)^n \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = 14*(n-1)-a(n-1), n>1. - R. J. Mathar, Jan 30 2010
From Bruno Berselli, Oct 26 2010: (Start)
a(n) = -a(-n+1) = (14*n+5*(-1)^n-7)/2.
G.f.: x*(1+12*x+x^2)/((1+x)*(1-x)^2).
a(n) = a(n-2)+14 for n>2.
a(n) = 14*A000217(n-1)+1 - 2*sum[i=1..n-1] a(i) for n>1. (End)
a(0)=1, a(1)=13, a(2)=15, a(n)=a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, May 11 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/14)*cot(Pi/14). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 5*exp(-x))/2. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/14).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/14)*cosec(Pi/14). (End)

Extensions

Corrected and extended by Giovanni Teofilatto, Nov 14 2008
Replaced the various formulas by a correct one - R. J. Mathar, Jan 30 2010

A047621 Numbers that are congruent to {3, 5} mod 8.

Original entry on oeis.org

3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59, 61, 67, 69, 75, 77, 83, 85, 91, 93, 99, 101, 107, 109, 115, 117, 123, 125, 131, 133, 139, 141, 147, 149, 155, 157, 163, 165, 171, 173, 179, 181, 187, 189, 195, 197, 203, 205, 211, 213, 219, 221, 227, 229
Offset: 1

Views

Author

Keywords

Comments

Numbers k for which Jacobi symbol J(2,k) = -1, so 2 (as well as 2^k) is not a square mod k. - Antti Karttunen, Aug 27 2005, corrected by Jianing Song, Nov 05 2019, see also A329095.
Numbers n whose multiplicative order modulo 2^k is 2^(k - 2) for k >= 4. For k = 3, the numbers whose multiplicative order modulo 8 is 2 are in sequence A047484. - Jianing Song, Apr 29 2018

Crossrefs

Row 1 of A112070. Complement of A047522 relative to A005408. Primes in this sequence: A003629.
Subsequence of A329095.

Programs

  • GAP
    a:=[3];; for n in [2..60] do a[n]:=8*n-a[n-1]-8; od; a; # Muniru A Asiru, Dec 04 2018
  • Haskell
    a047621 n = a047621_list !! (n-1)
    a047621_list = 3 : 5 : map (+ 8) a047621_list
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {3, 5, 11}, 100] (* Jean-François Alcover, Jul 31 2018 *)

Formula

a(n) = 8*n - a(n-1) - 8 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3 + 2*x + 3*x^2) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Oct 08 2011
A089911(3*a(n)) = 10. - Reinhard Zumkeller, Jul 05 2013
a(n) = 8*floor((n - 1)/2) + 4 + (-1)^n. - Gary Detlefs, Dec 03 2018
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
a(n) = 4*n - 2 - (-1)^n.
E.g.f.: 3 - (2 - 4*x)*exp(x) - exp(-x). (End)
a(n + 2) = a(n) + 8. - David A. Corneth, Dec 03 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8. - Amiram Eldar, Dec 11 2021
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/8) (1/A144981).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/8) (A101464). (End)

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A091998 Numbers that are congruent to {1, 11} mod 12.

Original entry on oeis.org

1, 11, 13, 23, 25, 35, 37, 47, 49, 59, 61, 71, 73, 83, 85, 95, 97, 107, 109, 119, 121, 131, 133, 143, 145, 155, 157, 167, 169, 179, 181, 191, 193, 203, 205, 215, 217, 227, 229, 239, 241, 251, 253, 263, 265, 275, 277, 287, 289, 299, 301, 311, 313, 323, 325, 335
Offset: 1

Views

Author

Ray Chandler, Feb 21 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n-h)/4 (h and n in A000027), then ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 12). Also a(n)^2 - 1 == 0 (mod 24).

Crossrefs

First row of A092260.
Cf. A175885 (n == 1 or 10 (mod 11)), A175886 (n == 1 or 12 (mod 13)).
Cf. A097933 (primes), A195143 (partial sums).

Programs

  • Haskell
    a091998 n = a091998_list !! (n-1)
    a091998_list = 1 : 11 : map (+ 12) a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ n: n in [1..350] | n mod 12 eq 1 or n mod 12 eq 11 ];
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,11,13},100] (* Harvey P. Dale, Jul 26 2017 *)
  • PARI
    is(n)=n=n%12;n==11 || n==1 \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = 12*n - a(n-1) - 12 (with a(1)=1). - Vincenzo Librandi, Nov 16 2010
a(n) = 6*n + 2*(-1)^n - 3.
G.f.: x*(1+10*x+x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 12 for n > 2.
a(n) = 12*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 + sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + (6*x - 3)*exp(x) + 2*exp(-x). - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2 + sqrt(3)) = 2*cos(Pi/12) (A188887).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/3)*cos(Pi/12). (End)

Extensions

Formulae and comment added by Bruno Berselli, Nov 17 2010 - Nov 18 2010

A175885 Numbers that are congruent to {1, 10} mod 11.

Original entry on oeis.org

1, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 100, 109, 111, 120, 122, 131, 133, 142, 144, 153, 155, 164, 166, 175, 177, 186, 188, 197, 199, 208, 210, 219, 221, 230, 232, 241, 243, 252, 254, 263, 265, 274, 276, 285, 287, 296, 298
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 11).

Crossrefs

Cf. A090771 (n==1 or 9 mod 10), A091998 (n==1 or 11 mod 12).
Cf. A195043 (partial sums).

Programs

Formula

G.f.: x*(1+9*x+x^2)/((1+x)*(1-x)^2).
a(n) = (22*n + 7*(-1)^n - 11)/4.
a(n) = -a(-n+1) = a(n-2) + 11 = a(n-1) + a(n-2) - a(n-3).
a(n) = 11*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n) = A195312(n) + A195312(n-1) = A195313(n) - A195313(n-2). - Bruno Berselli, Sep 18 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/11)*cot(Pi/11). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((22*x - 11)*exp(x) + 7*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/11).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/11)*cosec(Pi/11). (End)

A179260 Decimal expansion of the connective constant of the honeycomb lattice.

Original entry on oeis.org

1, 8, 4, 7, 7, 5, 9, 0, 6, 5, 0, 2, 2, 5, 7, 3, 5, 1, 2, 2, 5, 6, 3, 6, 6, 3, 7, 8, 7, 9, 3, 5, 7, 6, 5, 7, 3, 6, 4, 4, 8, 3, 3, 2, 5, 1, 7, 2, 7, 2, 8, 4, 9, 7, 2, 2, 3, 0, 1, 9, 5, 4, 6, 2, 5, 6, 1, 0, 7, 0, 0, 1, 5, 0, 0, 2, 2, 0, 4, 7, 1, 7, 4, 2, 9, 6, 7, 9, 8, 6, 9, 7, 0, 0, 6, 8, 9, 1, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Jul 06 2010

Keywords

Comments

This is the case n=8 of the ratio Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)). - Bruno Berselli, Dec 13 2012
An algebraic integer of degree 4: largest root of x^4 - 4x^2 + 2. - Charles R Greathouse IV, Nov 05 2014
This number is also the length ratio of the shortest diagonal (not counting the side) of the octagon and the side. This ratio is A121601 for the longest diagonal. - Wolfdieter Lang, May 11 2017 [corrected Oct 28 2020]
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 3, pp. 69-74. See also the comments in A302711 with the Romanus link and his Exemplum tertium.
This problem is equivalent to R(45, 2*sin(Pi/120)) = 2*sin(3*Pi/8) with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/120) see A302715. (End)

Examples

			1.84775906502257351225636637879357657364483325172728497223019546256107001500...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.10, p. 333.
  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
  • Neal Madras and Gordon Slade, Self-avoiding walks, Probability and its Applications, Birkhäuser Boston, Inc. Boston, MA, 1993.

Crossrefs

Programs

Formula

sqrt(2+sqrt(2)) = (2/1)(6/7)(10/9)(14/15)(18/17)(22/23)... (see Sondow-Yi 2010).
Equals 1/A154739. - R. J. Mathar, Jul 11 2010
Equals 2*A144981. - Paul Muljadi, Aug 23 2010
log (A001668(n)) ~ n log k where k = sqrt(2+sqrt(2)). - Charles R Greathouse IV, Nov 08 2013
2*cos(Pi/8) = sqrt(2+sqrt(2)). See a remark on the smallest diagonal in the octagon above. - Wolfdieter Lang, May 11 2017
Equals also 2*sin(3*Pi/8). See the comment on van Roomen's third problem above. - Wolfdieter Lang, Apr 29 2018
Equals i^(1/4) + i^(-1/4). - Gary W. Adamson, Jul 06 2022
Equals Product_{k>=0} ((8*k + 2)*(8*k + 6))/((8*k + 1)*(8*k + 7)). - Antonio Graciá Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A047522(k)). - Amiram Eldar, Nov 22 2024

A175886 Numbers that are congruent to {1, 12} mod 13.

Original entry on oeis.org

1, 12, 14, 25, 27, 38, 40, 51, 53, 64, 66, 77, 79, 90, 92, 103, 105, 116, 118, 129, 131, 142, 144, 155, 157, 168, 170, 181, 183, 194, 196, 207, 209, 220, 222, 233, 235, 246, 248, 259, 261, 272, 274, 285, 287, 298, 300, 311, 313, 324, 326, 337, 339, 350
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2-1 == 0 (mod 13).

Crossrefs

Programs

  • Haskell
    a175886 n = a175886_list !! (n-1)
    a175886_list = 1 : 12 : map (+ 13) a175886_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..350] | n mod 13 in [1, 12]]; // Bruno Berselli, Feb 29 2012
    
  • Magma
    [(26*n+9*(-1)^n-13)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
    
  • Mathematica
    Select[Range[1, 350], MemberQ[{1, 12}, Mod[#, 13]]&] (* Bruno Berselli, Feb 29 2012 *)
    CoefficientList[Series[(1 + 11 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{1,1,-1},{1,12,14},60] (* Harvey P. Dale, Oct 23 2015 *)
  • PARI
    a(n)=(26*n+9*(-1)^n-13)/4 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(1+11*x+x^2)/((1+x)*(1-x)^2).
a(n) = (26*n+9*(-1)^n-13)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = a(n-2)+13.
a(n) = 13*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n>1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/13)*cot(Pi/13). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((26*x - 13)*exp(x) + 9*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/13).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/13)*cosec(Pi/13). (End)
Previous Showing 11-20 of 33 results. Next