cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 95 results. Next

A054014 Chowla function of n read modulo (the number of divisors of n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 0, 3, 0, 3, 0, 1, 0, 4, 0, 2, 0, 3, 2, 1, 0, 3, 2, 3, 0, 3, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 0, 1, 0, 5, 0, 3, 2, 1, 0, 5, 1, 0, 0, 3, 0, 1, 0, 7, 2, 3, 0, 11, 0, 1, 4, 6, 2, 5, 0, 3, 2, 1, 0, 2, 0, 3, 0, 3, 2, 1, 0, 5, 4, 3, 0, 7, 2, 1, 0, 3, 0, 11, 0, 3, 2, 1, 0, 11, 0, 0, 2, 8, 0, 1, 0
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod tau(i),i=1..120)];
  • Mathematica
    Array[Mod[DivisorSigma[1, #] - # - 1, DivisorSigma[0, #]] &, 103] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    A054014(n) = ((sigma(n)-n-1) % numdiv(n)); \\ Antti Karttunen, Oct 30 2017

Formula

a(n) = A048050(n) mod A000005(n).

A054015 a(n) is Chowla function of n read modulo (number of proper divisors of n), a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 2, 1, 0, 6, 0, 0, 1, 0, 0, 4, 0, 4, 2, 1, 0, 3, 1, 2, 2, 0, 0, 2, 1, 0, 1, 1, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 2, 3, 0, 1, 0, 0, 3, 3, 0, 5, 0, 6, 3, 1, 0, 7, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 2, 1, 4, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Programs

  • Maple
    with(numtheory): [seq((sigma(i)-i-1) mod (tau(i)-1),i=2..120);#i>1
  • PARI
    A054015(n) = if(1==n,0,((sigma(n)-n-1) % (numdiv(n)-1))); \\ Antti Karttunen, Oct 20 2017

Formula

a(1) = 0; for n > 1, a(n) = A048050(n) mod A032741(n).

Extensions

Description clarified by Antti Karttunen, Oct 20 2017

A070037 Nonprime numbers k such that sigma(k) == k+1 (mod phi(k)).

Original entry on oeis.org

1, 4, 15, 900, 903, 28611063
Offset: 1

Views

Author

Labos Elemer, Apr 18 2002

Keywords

Comments

Nonprime numbers k such that Chowla(k)/phi(k) is an integer.
a(7) > 3.7*10^12. - Giovanni Resta, Jul 14 2013
3^30*13*852977547249259 and 3^36*13*621820631944710643 are also terms. - Giovanni Resta, Nov 14 2019

Examples

			Below 30000000 only 5 composite numbers were found: C = {4,15,900,902,28611063}, Chowla(C) = {2,8,1920,504,17600976}, phi(C) = {2,8,240,504,17600976}, quotient = {1,1,8,1,1}.
		

Crossrefs

Programs

  • Mathematica
    s2[x_] := DivisorSigma[1, x]-x-1 e0[x_] := EulerPhi[x] Do[s=s2[n]/e0[n]; If[IntegerQ[s]&&!PrimeQ[n], Print[{n, s2[n], e0[n], s}]], {n, 1, 1000000}]
  • PARI
    is(n)=!isprime(n) && Mod(sigma(n),eulerphi(n))==n+1 \\ Charles R Greathouse IV, Jun 06 2013

A132794 Numbers n such that sigma(phi(n)) -phi(n) -1 = phi(sigma(n) -n -1).

Original entry on oeis.org

8, 16, 64, 256, 16384, 262144, 1048576, 4294967296
Offset: 1

Views

Author

Keywords

Comments

Used sigma(n)-n-1, namely the sum of proper divisors minus 1.
a(8) > 10^8. - Michel Marcus, Nov 01 2014
Every 2^(A000043+1) is a term. Proof sketch: Let ch=A048050 and n=2^k, then ch(phi(2^k))=phi(ch(2^k)), ch(2^(k-1))=phi(2^k-2), 2^(k-1)-2=phi(2^(k-1)-1), since phi(prime)=prime-1 the condition is satisfied by every k=A000043+1 or n=2^(A000043+1). See link. - Jon Maiga, Dec 14 2018
Conjecture: a(n)=2^(A000043(n)+1), if true the next terms are: 4294967296, 4611686018427387904, 1237940039285380274899124224... - Jon Maiga, Dec 14 2018
a(9) > 6.5*10^11. - Giovanni Resta, Dec 01 2019

Crossrefs

Programs

  • GAP
    Filtered([4..1000000],n->Sigma(Phi(n))-Phi(n)-1=Phi(Sigma(n)-n-1)); # Muniru A Asiru, Dec 16 2018
  • Magma
    [n: n in [2..30000] | DivisorSigma(1,n) ne n+1 and DivisorSigma(1, EulerPhi(n)) - EulerPhi(n) - 1 eq EulerPhi(DivisorSigma(1,n) - n -1) ]; // G. C. Greubel, Dec 13 2018
    
  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 to n do
    a:=phi(sigma(i)-i-1); if a>0 then
    if sigma(phi(i))-phi(i)-1=a then print(i);
    fi; fi; od; end: P(10^7);
  • Mathematica
    ch[n_]:=DivisorSigma[1,n]-n-1
    test[n_]:=ch[n]!=0 && ch[EulerPhi[n]] == EulerPhi[ch[n]]
    Flatten[Position[Range[300000], Integer_ ? test]] (* Jon Maiga, Dec 14 2018 *)
  • PARI
    isok(n) = ((s=(sigma(n)-n-1)) != 0) && (sigma(eulerphi(n))-eulerphi(n)-1 == eulerphi(s)); \\ Michel Marcus, Nov 01 2014
    

Extensions

a(1) corrected and a(6)-a(7) from Michel Marcus, Nov 01 2014
a(8) from Giovanni Resta, Dec 01 2019

A326074 Numbers n for which A326073(n) is equal to abs(1+A326146(n)).

Original entry on oeis.org

3, 6, 28, 221, 391, 496, 1189, 1421, 1961, 2419, 5429, 7811, 8128, 11659, 15049, 18871, 36581, 44461, 48689, 57721, 80851, 86519, 98431, 107869, 117739, 146171, 169511, 181829, 207761, 235421, 240199, 280151, 312131, 387349, 437669, 497951, 525991, 637981, 685801, 735349, 752249, 804101, 885119, 950821, 1009009
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2019

Keywords

Comments

Numbers n such that 1+(A001065(n)-A020639(n)) is not zero and divides 1+n-A020639(n).
Note that whenever n is even, then the above condition reduces to "(even) numbers n such that A048050(n) is not zero and divides n-1", which is a condition satisfied only by the even terms of A000396.
a(375) = 360866239 = 449 * 509 * 1579 is the first term with more than two distinct prime factors, the second is a(392) = 413733139 = 199 * 239 * 8699, and the third is a(485) = 718660177 = 41 * 853 * 20549.
Question: Are any of these terms present also in A326064 and A326148? None of the first 564 terms are. If such intersections are empty, then there are no odd perfect numbers.
If one selects only semiprimes from this sequence, one is left with 6, 221, 391, 1189, 1961, 2419, 5429, 7811, 11659, 15049, 18871, 36581, ... (555 terms out of the first 564 terms). Their smaller prime factors are: 2, 13, 17, 29, 37, 41, 61, 73, 89, 101, 113, 157, 173, 181, 197, 233, 241, 257, 269, 281, 313, ... while their larger prime factors are: 3, 17, 23, 41, 53, 59, 89, 107, 131, 149, 167, 233, 257, 269, 293, 347, 359, 383, 401, 419, 467, 503, 521, ..., and both sequences of primes seem to be monotonic.

Crossrefs

Cf. A000396 (a subsequence, the even terms of this sequence if there are no odd perfect numbers).

Programs

A062972 Numbers k such that the Chowla function of k is divisible by phi(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.
Sequence contains all primes; see A070037 for nonprime terms. - Charles R Greathouse IV, Apr 14 2010

Crossrefs

Programs

  • Mathematica
    chowla[1] = 0; chowla[n_] := DivisorSigma[1, n] - n - 1; Select[Range[270], Divisible[chowla[#], EulerPhi[#]] &] (* Amiram Eldar, Dec 01 2019 *)
  • PARI
    j=[]; for(n=1,600, if(Mod(sigma(n)-n-1,eulerphi(n)) == 0,j=concat(j,n))); j

A202279 Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1

Original entry on oeis.org

142, 160, 1375, 6127, 12643, 51703, 86833, 103039, 104647, 112093, 137317, 218269, 261883, 266923, 449881, 505891, 617569, 907873
Offset: 1

Views

Author

Michel Lagneau, Dec 15 2011

Keywords

Comments

The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - Giovanni Resta, Oct 05 2018

Examples

			160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.
		

Crossrefs

Programs

  • Maple
    A055012 := proc(n)
            add(d^3,d=convert(n,base,10)) ;
    end proc:
    A048050 := proc(n)
            if n > 1 then
            numtheory[sigma](n)-1-n ;
            else
                    0;
            end if;
    end proc:
    isA202279 := proc(n)
            A055012(n) = A048050(n) ;
    end proc:
    for n from 1 do
            if isA202279(n) then
                    printf("%d,\n",n);
            end if;
    end do; # R. J. Mathar, Dec 15 2011
  • Mathematica
    Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q]
    Select[Range[1000000],DivisorSigma[1,#]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *)

Formula

{n: A055012(n) = A048050(n)}. - R. J. Mathar, Dec 15 2011

A346869 Sum of all divisors, except the smallest and the largest of every number, of the first n odd numbers.

Original entry on oeis.org

0, 0, 0, 0, 3, 3, 3, 11, 11, 11, 21, 21, 26, 38, 38, 38, 52, 64, 64, 80, 80, 80, 112, 112, 119, 139, 139, 155, 177, 177, 177, 217, 235, 235, 261, 261, 261, 309, 327, 327, 366, 366, 388, 420, 420, 440, 474, 498, 498, 554, 554, 554, 640, 640, 640, 680, 680, 708, 772, 796
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

Partial sums of the odd-indexed terms of Chowla's function A048050.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 0,
          a(n-1)+numtheory[sigma](2*n-1)-2*n)
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 19 2021
  • Mathematica
    s[1] = 0; s[n_] := DivisorSigma[1, 2*n - 1] - 2*n; Accumulate @ Array[s, 50] (* Amiram Eldar, Aug 19 2021 *)
    Accumulate[Join[{0},Table[DivisorSigma[1,n]-n-1,{n,3,151,2}]]] (* Harvey P. Dale, Jul 29 2023 *)
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346879(n): return sum(divisors(2*n-1)[1:-1])
    def aupton(nn): return list(accumulate(A346879(n) for n in range(1, nn+1)))
    print(aupton(60)) # Michael S. Branicky, Aug 19 2021

A346879 Sum of the divisors, except the smallest and the largest, of the n-th odd number.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 10, 0, 5, 12, 0, 0, 14, 12, 0, 16, 0, 0, 32, 0, 7, 20, 0, 16, 22, 0, 0, 40, 18, 0, 26, 0, 0, 48, 18, 0, 39, 0, 22, 32, 0, 20, 34, 24, 0, 56, 0, 0, 86, 0, 0, 40, 0, 28, 64, 24, 11, 44, 30, 0, 46, 0, 26, 104, 0, 0, 50, 24, 34, 80, 0, 0, 80, 36
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2021

Keywords

Comments

a(n) has a symmetric representation.

Examples

			For n = 5 the 5th odd number is 9 and the divisors of 9 are [1, 3, 9] and the sum of the divisors of 9 except the smaller and the largest is 3, so a(5) = 3.
For n = 6 the 6th odd number is 11 and the divisors of 11 are [1, 11] and the sum of the divisors of 11 except the smaller and the largest is 0, so a(6) = 0.
		

Crossrefs

Bisection of A048050.
Partial sums give A346869.

Programs

  • Mathematica
    a[1] = 0; a[n_] := DivisorSigma[1, 2*n - 1] - 2*n; Array[a, 100] (* Amiram Eldar, Aug 19 2021 *)
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(2*n-1)[1:-1])
    print([a(n) for n in range(1, 79)]) # Michael S. Branicky, Aug 19 2021

Formula

a(n) = A048050(2*n-1).

A347154 Sum of all divisors, except the largest of every number, of the first n positive even numbers.

Original entry on oeis.org

1, 4, 10, 17, 25, 41, 51, 66, 87, 109, 123, 159, 175, 203, 245, 276, 296, 351, 373, 423, 477, 517, 543, 619, 662, 708, 774, 838, 870, 978, 1012, 1075, 1153, 1211, 1285, 1408, 1448, 1512, 1602, 1708, 1752, 1892, 1938, 2030, 2174, 2250, 2300, 2456, 2529, 2646, 2760
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

Sum of all aliquot divisors (or aliquot parts) of the first n positive even numbers.
Partial sums of the even-indexed terms of A001065.
a(n) has a symmetric representation.

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSigma[1, 2*n] - 2*n; Accumulate @ Array[s, 100] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*=2; sigma(k)-k); \\ Michel Marcus, Aug 20 2021
    
  • Python
    from sympy import divisors
    from itertools import accumulate
    def A346878(n): return sum(divisors(2*n)[:-1])
    def aupton(nn): return list(accumulate(A346878(n) for n in range(1, nn+1)))
    print(aupton(51)) # Michael S. Branicky, Aug 20 2021
    
  • Python
    from math import isqrt
    def A347154(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+1) # Chai Wah Wu, Nov 02 2023

Formula

a(n) = n + A346870(n).
a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, May 15 2023
Previous Showing 31-40 of 95 results. Next