A084214
Inverse binomial transform of a math magic problem.
Original entry on oeis.org
1, 1, 4, 6, 14, 26, 54, 106, 214, 426, 854, 1706, 3414, 6826, 13654, 27306, 54614, 109226, 218454, 436906, 873814, 1747626, 3495254, 6990506, 13981014, 27962026, 55924054, 111848106, 223696214, 447392426, 894784854, 1789569706, 3579139414, 7158278826, 14316557654
Offset: 0
-
a084214 n = a084214_list !! n
a084214_list = 1 : xs where
xs = 1 : 4 : zipWith (+) (map (* 2) xs) (tail xs)
-- Reinhard Zumkeller, Aug 01 2011
-
[(5*2^n-3*0^n+4*(-1)^n)/6: n in [0..35]]; // Vincenzo Librandi, Jun 15 2011
-
A084214 := proc(n)
(5*2^n - 3*0^n + 4*(-1)^n)/6 ;
end proc:
seq(A084214(n),n=0..60) ; # R. J. Mathar, Aug 18 2024
-
f[n_]:=2/(n+1);x=3;Table[x=f[x];Numerator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2010 *)
LinearRecurrence[{1,2},{1,1,4},50] (* Harvey P. Dale, Mar 05 2021 *)
-
a(n) = 5<<(n-1)\3 + bitnegimply(1,n); \\ Kevin Ryde, Dec 20 2023
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A221174
a(0)=-4, a(1)=5; thereafter a(n) = 2*a(n-1) + a(n-2).
Original entry on oeis.org
-4, 5, 6, 17, 40, 97, 234, 565, 1364, 3293, 7950, 19193, 46336, 111865, 270066, 651997, 1574060, 3800117, 9174294, 22148705, 53471704, 129092113, 311655930, 752403973, 1816463876, 4385331725, 10587127326, 25559586377, 61706300080, 148972186537, 359650673154
Offset: 0
-
a221174 n = a221174_list !! n
a221174_list = -4 : 5 : zipWith (+)
(map (* 2) $ tail a221174_list) a221174_list
-- Reinhard Zumkeller, Jan 04 2013
-
LinearRecurrence[{2, 1}, {-4, 5}, 50] (* Paolo Xausa, Sep 02 2024 *)
-
Vec(-(13*x-4)/(x^2+2*x-1) + O(x^50)) \\ Colin Barker, Jul 10 2015
A048694
Generalized Pellian with second term equal to 7.
Original entry on oeis.org
1, 7, 15, 37, 89, 215, 519, 1253, 3025, 7303, 17631, 42565, 102761, 248087, 598935, 1445957, 3490849, 8427655, 20346159, 49119973, 118586105, 286292183, 691170471, 1668633125, 4028436721, 9725506567
Offset: 0
-
with(combinat): a:=n->5*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # Zerinvary Lajos, Apr 04 2008
-
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{6},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2,1},{1,7},40] (* Harvey P. Dale, Jul 22 2011 *)
-
a[0]:1$
a[1]:7$
a[n]:=2*a[n-1]+a[n-2]$
A048694(n):=a[n]$
makelist(A048694(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
A048696
Generalized Pellian with second term equal to 9.
Original entry on oeis.org
1, 9, 19, 47, 113, 273, 659, 1591, 3841, 9273, 22387, 54047, 130481, 315009, 760499, 1836007, 4432513, 10701033, 25834579, 62370191, 150574961, 363520113, 877615187, 2118750487, 5115116161, 12348982809, 29813081779, 71975146367
Offset: 0
-
a048696 n = a048696_list !! n
a048696_list = 1 : 9 : zipWith (+)
a048696_list (map (2 *) $ tail a048696_list)
-- Reinhard Zumkeller, Dec 15 2013
-
[ n le 2 select 8*n-7 else 2*Self(n-1)+Self(n-2): n in [1..28] ]; // Klaus Brockhaus, Aug 17 2009
-
with(combinat): a:=n->7*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..25); # Zerinvary Lajos, Apr 04 2008
-
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{8},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2,1},{1,9},30] (* Harvey P. Dale, Apr 20 2012 *)
-
a[0]:1$
a[1]:9$
a[n]:=2*a[n-1]+a[n-2]$
A048696(n):=a[n]$
makelist(A048696(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
A164073
a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 3.
Original entry on oeis.org
1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576, 3145728, 2097152, 6291456
Offset: 1
-
[ n le 2 select 2*n-1 else 2*Self(n-2): n in [1..42] ];
-
terms = 50; CoefficientList[Series[x * (1 + 3 * x)/(1 - 2 * x^2), {x, 0, terms}], x] (* T. D. Noe, Mar 31 2014 *)
Flatten[Table[{2^n, 3 * 2^n}, {n, 0, 31}]] (* Alonso del Arte, Nov 30 2016 *)
CoefficientList[Series[x (1 + 3 x)/(1 - 2 x^2), {x, 0, 44}], x] (* Michael De Vlieger, Dec 13 2016 *)
-
a(n) = (5 + (-1)^n) * 2^((2*n-9)\/4)
-
Vec(x*(1+3*x)/(1-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 13 2016
A048693
Generalized Pellian with 2nd term equal to 6.
Original entry on oeis.org
1, 6, 13, 32, 77, 186, 449, 1084, 2617, 6318, 15253, 36824, 88901, 214626, 518153, 1250932, 3020017, 7290966, 17601949, 42494864, 102591677, 247678218, 597948113, 1443574444, 3485097001, 8413768446
Offset: 0
a(n)=[ (5+sqrt(2))(1+sqrt(2))^n-(5-sqrt(2))(1-sqrt(2))^n ]/2*sqrt(2)
-
with(combinat): a:=n->4*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
-
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{5},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2,1},{1,6},30] (* Harvey P. Dale, Mar 29 2013 *)
-
a[0]:1$
a[1]:6$
a[n]:=2*a[n-1]+a[n-2]$
A048693(n):=a[n]$
makelist(A048693(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
A105082
Expansion of (5+4x)/(1-2x-x^2).
Original entry on oeis.org
5, 14, 33, 80, 193, 466, 1125, 2716, 6557, 15830, 38217, 92264, 222745, 537754, 1298253, 3134260, 7566773, 18267806, 44102385, 106472576, 257047537, 620567650, 1498182837, 3616933324, 8732049485, 21081032294, 50894114073
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,1).
A266504
a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.
Original entry on oeis.org
2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0
Cf.
A000129,
A001333,
A002203,
A002965,
A006451,
A006452,
A002965,
A038761,
A038762,
A048654,
A048655,
A054490,
A078343,
A098586,
A098790,
A100525,
A101386,
A135532,
A216134,
A216162,
A253811,
A255236,
A266504,
A266505,
A266507.
-
I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
-
LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
-
Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015
A048697
Generalized Pellian with second term equal to 10.
Original entry on oeis.org
1, 10, 21, 52, 125, 302, 729, 1760, 4249, 10258, 24765, 59788, 144341, 348470, 841281, 2031032, 4903345, 11837722, 28578789, 68995300, 166569389, 402134078, 970837545, 2343809168, 5658455881
Offset: 0
-
a048697 n = a048697_list !! n
a048697_list = 1 : 10 : zipWith (+)
a048697_list (map (* 2) $ tail a048697_list)
-- Reinhard Zumkeller, Sep 05 2014
-
with(combinat): a:=n->8*fibonacci(n-1,2)+fibonacci(n,2): seq(a(n), n=1..25); # Zerinvary Lajos, Apr 04 2008
-
a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{9},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2,1},{1,10},35] (* Harvey P. Dale, Jul 26 2011 *)
Comments