cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A024023 a(n) = 3^n - 1.

Original entry on oeis.org

0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0

Views

Author

Keywords

Comments

Number of different directions along lines and hyper-diagonals in an n-dimensional cubic lattice for the attacking queens problem (A036464 in n=2, A068940 in n=3 and A068941 in n=4). The n-dimensional direction vectors have the a(n)+1 Cartesian coordinates (i,j,k,l,...) where i,j,k,l,... = -1, 0, or +1, excluding the zero-vector i=j=k=l=...=0. The corresponding hyper-line count is A003462. - R. J. Mathar, May 01 2006
Total number of sequences of length m=1,...,n with nonzero integer elements satisfying the condition Sum_{k=1..m} |n_k| <= n. See the K. A. Meissner link p. 6 (with a typo: it should be 3^([2a]-1)-1). - Wolfdieter Lang, Jan 21 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are disjoint and either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Number of neighbors in Moore's neighborhood in n dimensions. - Dmitry Zaitsev, Nov 30 2015
Number of terms in conjunctive normal form of Boolean expression with n variables. E.g., a(2) = 8: [~x, ~y, x, y, ~x|~y, ~x|y, x|~y, x|y]. - Yuchun Ji, May 12 2023
Number of rays of the Coxeter arrangement of type B_n. Equivalently, number of facets of the n-dimensional type B permutahedron. - Jose Bastidas, Sep 12 2023

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Ternary......decimal:
0...............0
2...............2
22..............8
222............26
2222...........80
22222.........242
222222........728
2222222......2186
22222222.....6560
222222222...19682
2222222222..59048
etc...........etc.
(End)
Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors.
A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
		

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Cf. triangle A013609.
Cf. second column of A145901.

Programs

Formula

a(n) = A000244(n) - 1.
a(n) = 2*A003462(n). - R. J. Mathar, May 01 2006
A128760(a(n)) > 0. - Reinhard Zumkeller, Mar 25 2007
G.f.: 2*x/((-1+x)*(-1+3*x)) = 1/(-1+x) - 1/(-1+3*x). - R. J. Mathar, Nov 19 2007
a(n) = Sum_{k=1..n} Sum_{m=1..k} binomial(k-1,m-1)*2^m, n >= 1. a(0)=0. From the sequence combinatorics mentioned above. Twice partial sums of powers of 3.
E.g.f.: e^(3*x) - e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = A024101(n)/A034472(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = 3*a(n-1) + 2 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
E.g.f.: -E(0) where E(k) = 1 - 3^k/(1 - x/(x - 3^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n) = A227048(n,A020914(n)). - Reinhard Zumkeller, Jun 30 2013
Sum_{n>=1} 1/a(n) = A214369. - Amiram Eldar, Nov 11 2020
a(n) = Sum_{k=1..n} 2^k*binomial(n,k). - Ridouane Oudra, Jun 15 2025
From Peter Bala, Jul 01 2025: (Start)
For n >= 1, a(2*n)/a(n) = A034472(n) and a(3*n)/a(n) = A034513(n).
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A003462 (k = 2), A006100 (k = 3), A006101 (k = 4), A006102 (k = 5), A022196 (k = 6), A022197 (k = 7), A022198 (k = 8), A022199 (k = 9), A022200 (k = 10), A022201 (k = 11), A022202 (k = 12) and A022203 (k = 13).
The following are all examples of telescoping series:
Sum_{n >= 1} 3^n/(a(n)*a(n+1)) = 1/2^2; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/(2*8^2).
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 3^n/(a(n)*a(n+2)) = 5/64; Sum_{n >= 1} (-3)^n/(a(n)*a(n+2)) = -3/64.
Sum_{n >= 1} 3^n/(a(n)*a(n+4)) = 703/83200; Sum_{n >= 1} (-3)^n/(a(n)*a(n+4)) = - 417/83200. (End)

A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 14 2003

Keywords

Comments

Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - Paul Barry, Jan 19 2004
This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - Emeric Deutsch, May 31 2004
Riordan array (1/(1-x), x/(1-x)^2). - Paul Barry, May 09 2005
The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - Philippe Deléham, May 26 2005
The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006
Unsigned version of A129818. - Philippe Deléham, Oct 25 2007
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Per Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - Wolfdieter Lang, Jul 09 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - R. J. Mathar, Mar 12 2013
T(n,k) = A258993(n+1,k) for k = 0..n-1. - Reinhard Zumkeller, Jun 22 2015
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 23 2018
Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - Wolfdieter Lang, Mar 25 2020
It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2*n+1)-gon including the edge, 1. The largest root of x^3 - 6*x^2 + 5*x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2*n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2*n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N))). Relating to the 9-gon, the largest root of x^4 - 10*x^3 + 15*x^2 - 7*x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - Gary W. Adamson, Jun 28 2022
For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - Eric W. Weisstein, Jul 12 2023
Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - Peter Bala, Feb 06 2024
T(n, k) is the number of occurrences of the periodic substring (01)^k in the periodic string (01)^n (see Proposition 4.7 at page 7 in Fang). - Stefano Spezia, Jun 09 2024

Examples

			Triangle begins as:
  1;
  1    1;
  1    3    1;
  1    6    5    1;
  1   10   15    7    1;
  1   15   35   28    9    1;
  1   21   70   84   45   11    1;
  1   28  126  210  165   66   13    1;
  1   36  210  462  495  286   91   15    1;
  1   45  330  924 1287 1001  455  120   17    1;
  1   55  495 1716 3003 3003 1820  680  153   19    1;
...
From _Philippe Deléham_, Mar 26 2012: (Start)
(0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 1,  1
  0, 1,  3,   1
  0, 1,  6,   5,   1
  0, 1, 10,  15,   7,   1
  0, 1, 15,  35,  28,   9,  1
  0, 1, 21,  70,  84,  45, 11,  1
  0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a085478 n k = a085478_tabl !! n !! k
    a085478_row n = a085478_tabl !! n
    a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A078812 *) (*Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *)
    CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *)
    Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
  • PARI
    T(n,k) = binomial(n+k,n-k)
    
  • Sage
    [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - Werner Schulte, Jul 12 2017
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - Werner Schulte, Jul 12 2017
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)

A157162 1/Product_{n>=1} (1 - a(n)*x^n) = 1 + Sum_{k>=1} F(k+1)*x^k = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 10, 18, 24, 40, 52, 88, 125, 210, 286, 492, 702, 1144, 1638, 2786, 3986, 6704, 9640, 16096, 23964, 39650, 57794, 97108, 144245, 236880, 353010, 589298, 880828, 1459960, 2179068, 3604880, 5471094, 9030450, 13561742, 22542396, 34277634
Offset: 1

Views

Author

Wolfdieter Lang, Aug 10 2009

Keywords

Comments

A formal infinite product representation for the o.g.f. series of the Fibonacci numbers (A000045).
In the context of Witt rings the o.g.f. is called associated unital series for the (infinite dimensional) Witt vector (a(1),a(2),...). Sometimes also called inverse Somos transform, here for the Fibonacci numbers.
1-x-x^2 = product(1 - a(n)*x^n, n=1..infinity).

Examples

			Recurrence I: a(2) = F(3) - a(1)^2 = 1; a(4) = F(5) - (a(1)*a(3) + a(2)^2 +a(1)^2*a(2) + a(1)^4) = 5 - 4 = 1.
Recurrence II (simplified): a(4) = (-(a(1)^4 + 2*a(2)^2) + L(4))/4 = (-3 + 7)/4 = 1.
Recurrence II: a(4)= (-(a(1)^4 + 2*a(2)^2)/4 + 1*1*F(5) - (1/2)*(2*F(2)*F(4)+ 1*F(3)^2) +(1/3)*3*F(2)^2*F(3)-(1/4)*1*F(2)^4 = -3/4 +7/4 = 1.
		

Crossrefs

Cf. A147542 (with the product instead of the reciprocal one).
Cf. A220418.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, (-Sum[d a[d]^(n/d), {d, Most@ Divisors@ n}] + LucasL[n])/n];
    Array[a, 50] (* Jean-François Alcover, Mar 02 2020 *)

Formula

Recurrence I. With P(n,m) the set of partitions of n with m parts:
a(n)= F(n+1) - sum(sum(product(a(j)^e(j),j=1..m), p from P(n,m)), m=2..n), n>=2, with sum(j*e(j),j=1..n)=n, sum(e(j),j=1..n)=m for the partition p of n with m parts. F(n) = A000045(n) (Fibonacci numbers). Input a(1)=F(2)=1. See the array A008284(n,m) for the cardinalities of the sets P(n,m).
Recurrence II (simplified version). With the Lucas numbers L(n)=A000035(n), n>=1, as input (found by V. Jovovic, Mar 10 2009):
a(n) = (- sum(d*a(d)^(n/d), d|n with 1<=d=2, a(1)=1.
Recurrence II. With the number array M0(n,vec(e)) given for any partition in A048996.
a(n) = - sum((d/n)*(a(d))^(n/d),d|n with 1<=d=2; a(1)=F(2)=1. See recurrence 1 for the set P(n,m). The M0 numbers are m!/product(e(j)!,j=1..n).

A049019 Irregular triangle read by rows: Row n gives numbers of preferential arrangements (onto functions) of n objects that are associated with the partition of n, taken in Abramowitz and Stegun order.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 8, 6, 36, 24, 1, 10, 20, 60, 90, 240, 120, 1, 12, 30, 20, 90, 360, 90, 480, 1080, 1800, 720, 1, 14, 42, 70, 126, 630, 420, 630, 840, 5040, 2520, 4200, 12600, 15120, 5040, 1, 16, 56, 112, 70, 168, 1008, 1680, 1260, 1680, 1344, 10080, 6720
Offset: 1

Views

Author

Keywords

Comments

This is a refinement of A019538 with row sums in A000670.
From Tom Copeland, Sep 29 2008: (Start)
This array is related to the reciprocal of an e.g.f. as sketched in A133314. For example, the coefficient of the fourth-order term in the Taylor series expansion of 1/(a(0) + a(1) x + a(2) x^2/2! + a(3) x^3/3! + ...) is a(0)^(-5) * {24 a(1)^4 - 36 a(1)^2 a(2) a(0) + [8 a(1) a(3) + 6 a(2)^2] a(0)^2 - a(4) a(0)^3}.
The unsigned coefficients characterize the P3 permutohedron depicted on page 10 in the Loday link with 24 vertices (0-D faces), 36 edges (1-D faces), 6 squares (2-D faces), 8 hexagons (2-D faces) and 1 3-D permutohedron. Summing coefficients over like dimensions gives A019538 and A090582. Compare to A133437 for the associahedron.
Given the n X n lower triangular matrix M = [ binomial(j,k) u(j-k) ], the first column of the inverse matrix M^(-1) contains the (n-1) rows of A049019 as the coefficients of the multinomials formed from the u(j). M^(-1) can be computed as (1/u(0)){I - [I- M/u(0)]^n} / {I - [I- M/u(0)]} = - u(0)^(-n) {sum(j=1 to n)(-1)^j bin(n,j) u(0)^(n-j) M^(j-1)} where I is the identity matrix.
Another method for computing the coefficients and partitions up to (n-1) rows is to use (1-x^n)/ (1-x) = 1+x^2+x^3+ ... + x^(n-1) with x replaced either by [I- M/a(0)] or [1- g(x)/a(0)] with the n X n matrix M = [bin(j,k) a(j-k)] and g(x)= a(0) + a(1)x + a(2)x^2/2! + ... + a(n) x^n/n!. The first n terms (rows of the first column) of the resulting series (matrix) divided by a(0) contain the (n-1) rows of signed coefficients and associated partitions for A049019.
To obtain unsigned coefficients, change a(j) to -a(j) for j>0. A133314 contains other matrices and recursion formulas that could be used. The Faa di Bruno formula gives the coefficients as n! [e(1)+e(2)+...+e(n)]! / [1!^e(1) e(1)! 2!^e(2) e(2)!... n!^e(n) e(n)! ] for the partition of form [a(1)^e(1)...a(n)^e(n)] with [e(1)+2e(2)+...+ n e(n)] = n (see Abramowitz and Stegun pages 823 and 831) in agreement with Arnold's formula. (End)

Examples

			Irregular triangle starts (note the grouping by ';' when comparing with A019538):
[1] 1;
[2] 1;  2;
[3] 1;  6;  6;
[4] 1;  8,  6; 36;  24;
[5] 1; 10, 20; 60,  90; 240; 120;
[6] 1; 12, 30, 20;  90, 360,  90; 480, 1080; 1800; 720;
[7] 1; 14, 42, 70; 126, 630, 420, 630;  840, 5040, 2520; 4200, 12600; 15120; 5040;
.
a(17) = 240 because we can write
A048996(17)*A036038(17) = 4*60 = A036040(17)*A036043(17)! = 10*24.
As in A133314, 1/exp[u(.)*x] = u(0)^(-1) [ 1 ] + u(0)^(-2) [ -u(1) ] x + u(0)^(-3) [ -u(0)u(2) + 2 u(1)^2 ] x^2/2! + u(0)^(-4) [ -u(0)^2 u(3) + 6 u(0)u(1)u(2) - 6 u(1)^3 ] x^3/3! + u(0)^(-5) [ -u(0)^3 u(4) + 8 u(0)^2 u(1)u(3) + 6 u(0)^2 u(2)^2 - 36 u(0)u(1)^2 u(2) + 24 u(1)^4 ] x^4/4! + ... . These are essentially refined face polynomials for permutohedra: empty set + point + line segment + hexagon + 3-D- permutohedron + ... . - _Tom Copeland_, Oct 04 2008
		

Crossrefs

Programs

  • SageMath
    def A049019(n):
        if n == 0: return [1]
        P = lambda k: Partitions(n, min_length=k, max_length=k)
        Q = (p.to_list() for k in (1..n) for p in P(k))
        return [factorial(len(p))*SetPartitions(sum(p), p).cardinality() for p in Q]
    for n in (1..7): print(A049019(n)) # Peter Luschny, Aug 30 2019

Formula

a(n) = A048996(n) * A036038(n);
a(n) = A036040(n) * factorial(A036043(n)).
A lowering operator for the unsigned multinomials in the brackets in the example is [d/du(1) 1/POP] where u(1) is treated as a continuous variable and POP is an operator that pulls off the number of parts of a partition ignoring u(0), e.g., [d/du(1) 1/POP][ u(0)u(2) + 2 u(1)^2 ] = (1/2) 2*2 u(1) = 2*u(1), analogous to the prototypical delta operator (d/dz) z^n = n z^(n-1). - Tom Copeland, Oct 04 2008
From the matrix formulation with M_m,k = 1/(m-k)!; g(x) = exp[ u(.) x]; an orthonormal vector basis x_1, ..., x_n and En(x^k) = x_k for k <= n and zero otherwise, for j=0 to n-1 the j-th signed row multinomial is given by the wedge product of x_1 with the wedge product (-1)^j * j! * u(0)^(-n) * Wedge{ En[x g(x), x^2 g(x), ..., x^(j) g(x), ~, x^(j+2) g(x), ..., x^n g(x)] } where Wedge{a,b,c} = a v b v c (the usual wedge symbol is inverted here to prevent confusion with the power notation, see Mathworld) and the (j+1)-th element is omitted from the product. Tom Copeland, Oct 06 2008 [Changed an x^n to x^(n-1) and "inner product of x_1" to "wedge". - Tom Copeland, Feb 03 2010]

Extensions

Partitions for 7 and 8 from Tom Copeland, Oct 02 2008
Definition edited by N. J. A. Sloane, Nov 06 2023

A115131 Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Examples

			First few rows of triangle T(n,k) are as follows (see the link for rows 1..10):
   1;
  -2,  1;
   3, -3,  1;
  -4,  4,  2, -4, 1;
   5, -5, -5,  5, 5, -5, 1;
  ...
n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4.
  (For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
		

References

  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).

Crossrefs

Cf. A210258 (in another ordering of partitions), A132460 (N=2), A325477 (N=3),
A324602 (N=4).

Formula

T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 14 2019

A035206 Number of multisets associated with least integer of each prime signature.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 105, 140, 420, 140, 105, 210, 42, 1, 8, 56, 56, 56, 28, 168, 336, 336, 168, 168, 280, 840, 420, 840, 70, 280, 1120, 560, 168, 420, 56, 1, 9, 72
Offset: 0

Views

Author

Keywords

Comments

a(n,k) multiplied by A036038(n,k) yields A049009(n,k).
a(n,k) enumerates distributions of n identical objects (balls) into m of altogether n distinguishable boxes. The k-th partition of n, taken in the Abramowitz-Stegun (A-St) order, specifies the occupation of the m =m(n,k)= A036043(n,k) boxes. m = m(n,k) is the number of parts of the k-th partition of n. For the A-St ordering see pp.831-2 of the reference given in A117506. - Wolfdieter Lang, Nov 13 2007
The sequence of row lengths is p(n)= A000041(n) (partition numbers).
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
The corresponding triangle with summed row entries which belong to partitions of the same number of parts k is A103371. [Wolfdieter Lang, Jul 11 2012]

Examples

			n\k 1  2  3  4   5   6   7   8   9  10  11  12  13 14 15
0   1
1   1
2   2  1
3   3  6  1
4   4 12  6 12   1
5   5 20 20 30  30  20   1
6   6 30 30 15  60 120  20  60  90  30   1
7   7 42 42 42 105 210 105 105 140 420 140 105 210 42  1
...
Row No. 8:  8  56 56 56 28 168 336 336 168 168 280  840 420 840 70 280 1120 560 168 420 56 1
Row No. 9: 9 72 72 72 72 252 504 504 252 252 504 84 504 1512 1512 1512 1512 504 630 2520 1260 3780 630 504 2520 1680 252 756 72 1
[rewritten and extended table by _Wolfdieter Lang_, Jul 11 2012]
a(5,5) relates to the partition (1,2^2) of n=5. Here m=3 and 5 indistinguishable (identical) balls are put into boxes b1,...,b5 with m=3 boxes occupied; one with one ball and two with two balls.
Therefore a(5,5) = binomial(5,3)*3!/(1!*2!) = 10*3 = 30. _Wolfdieter Lang_, Nov 13 2007
		

Crossrefs

Cf. A001700 (row sums).
Cf. A103371(n-1, m-1) (triangle obtained after summing in every row the numbers with like part numbers m).

Programs

  • PARI
    C(sig)={my(S=Set(sig)); binomial(vecsum(sig), #sig)*(#sig)!/prod(k=1, #S, (#select(t->t==S[k], sig))!)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 18 2020

Formula

a(n,k) = A048996(n,k)*binomial(n,m(n,k)),n>=1, k=1,...,p(n) and m(n,k):=A036043(n,k) gives the number of parts of the k-th partition of n.

Extensions

More terms from Joshua Zucker, Jul 27 2006
a(0)=1 prepended by Andrew Howroyd, Oct 18 2020

A102462 Max{ k!/(a(1)!*a(2)!*..*a(n)!) : a(1) + 2*a(2) + 3*a(3) + ... + n*a(n) = n, a(1) + a(2) + ... + a(n) = k }.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 12, 20, 30, 60, 105, 168, 280, 504, 840, 1512, 2520, 5040, 9240, 15840, 27720, 55440, 102960, 180180, 360360, 675675, 1201200, 2162160, 4084080, 7351344, 12697776, 24504480, 46558512, 84651840, 155195040, 296281440, 543182640, 961015440
Offset: 0

Views

Author

Vladeta Jovovic, Feb 23 2005

Keywords

Comments

a(n) is the greatest number in row n of A048996 and in row n of A072811. Thus a(n) is the greatest number of compositions (permutations) obtainable from some partition of n. Example: a(7)=12 is the greatest number of compositions from some partition of 7, specifically, the partition {3,2,1,1}. - Clark Kimberling, Dec 24 2006
The partition(s) giving this optimum is always one where #{parts equal to i} >= #{parts equal to j} if i <= j. These partitions are counted in A007294. - Franklin T. Adams-Watters, Apr 08 2008
The number of partition(s) giving this optimum is given by A198254. - Olivier Gérard, Nov 17 2011

Crossrefs

Programs

  • Maple
    b:= proc(n,i,p) option remember; `if`(n=0 or i=1, (p+n)!/n!,
           max(seq(b(n-i*j, i-1, p+j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 15 2015
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p + n)!/n!, Max[Table[ b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)

A049009 Number of functions from a set to itself such that the sizes of the preimages of the individual elements in the range form the n-th partition in Abramowitz and Stegun order.

Original entry on oeis.org

1, 1, 2, 2, 3, 18, 6, 4, 48, 36, 144, 24, 5, 100, 200, 600, 900, 1200, 120, 6, 180, 450, 300, 1800, 7200, 1800, 7200, 16200, 10800, 720, 7, 294, 882, 1470, 4410, 22050, 14700, 22050, 29400, 176400, 88200, 88200, 264600, 105840, 5040, 8, 448, 1568, 3136, 1960
Offset: 0

Views

Author

Keywords

Comments

a(n,k) is a refinement of 1; 2,2; 3,18,6; 4,84,144,24; ... cf. A019575.
a(n,k)/A036040(n,k) and a(n,k)/A048996(n,k) are also integer sequences.
Apparently a(n,k)/A036040(n,k) = A178888(n,k). - R. J. Mathar, Apr 17 2011
Let f,g be functions from [n] into [n]. Let S_n be the symmetric group on n letters. Then f and g form the same partition iff S_nfS_n = S_ngS_n. - Geoffrey Critzer, Jan 13 2022

Examples

			Table begins:
  1;
  1;
  2,  2;
  3, 18,  6;
  4, 48, 36, 144, 24;
  ...
For n = 4, partition [3], we can map all three of {1,2,3} to any one of them, for 3 possible values. For n=5, partition [2,1], there are 3 choices for which element is alone in a preimage, 3 choices for which element to map that to and then 2 choices for which element to map the pair to, so a(5) = 3*3*2 = 18.
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page38.

Crossrefs

Programs

  • Mathematica
    f[list_] := Multinomial @@ Join[{nn - Length[list]}, Table[Count[list, i], {i, 1, nn}]]*Multinomial @@ list; Table[nn = n; Map[f, IntegerPartitions[nn]], {n, 0, 10}] // Grid (* Geoffrey Critzer, Jan 13 2022 *)
  • PARI
    C(sig)={my(S=Set(sig)); (binomial(vecsum(sig), #sig)) * (#sig)! * vecsum(sig)! / (prod(k=1, #S, (#select(t->t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 18 2020

Formula

a(n,k) = A036038(n,k) * A035206(n,k).

Extensions

Better definition from Franklin T. Adams-Watters, May 30 2006
a(0)=1 prepended by Andrew Howroyd, Oct 18 2020

A147542 Product(1 + a(n)*x^n, n=1..infinity) = sum(F(k+1)*x^k, k=1..infinity) = 1/(1-x-x^2), where F(n) = A000045(n) (Fibonacci numbers).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 4, 18, 8, 8, 18, 17, 40, 50, 88, 396, 210, 296, 492, 690, 1144, 1776, 2786, 3545, 6704, 10610, 16096, 25524, 39650, 63544, 97108, 269154, 236880, 389400, 589298, 956000, 1459960, 2393538, 3604880, 5739132, 9030450, 14777200
Offset: 1

Views

Author

Neil Fernandez, Nov 06 2008

Keywords

Comments

A formal infinite product representation for the Fibonacci numbers (A000045(n+1)).
For references see A147541. [R. J. Mathar, Mar 12 2009]

Crossrefs

Programs

  • Mathematica
    m = 200;
    sol = Thread[CoefficientList[Sum[Log[1 + a[n] x^n], {n, 1, m}] - Log[1/(1 - x - x^2)] + O[x]^(m + 1), x] == 0] // Solve // First;
    Array[a, m] /. sol (* Jean-François Alcover, Oct 22 2019 *)

Formula

From Wolfdieter Lang, Mar 06 2009: (Start)
Recurrence I: With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)):
a(n)= F(n+1) - sum(sum(product(a(k[j]),j=1..m),fp from FP(n,m)),m=2..maxm(n)), with maxm(n):=A003056(n) and the distinct parts k[j], j=1,...,m, of the partition fp of n, n>=3. Inputs a(1)=F(2)=1, a(2)=F(3)=2. See the array A008289(n,m) for the cardinality of the set FP(n,m).
Recurrence II: With the definition of FP(n,m) from the above recurrence I, P(n,m) the general set of partitions of n with m parts, and the multinomial numbers M_0 (given for every partition under A048996):
a(n) = sum((d/n)*(-a(d)^(n/d)),d|n with 1=2; a(1)=F(2)=1. The exponents e(j)>=0 satisfy sum(j*e(j),j=1..n)=n and sum(e(j),j=1..m). The M_0 numbers are m!/product(e(j)!,j=1..n).
Example of recurrence I: a(4) = F(5) - a(1)*a(3) = 5 - 1*1 = 4.
Example of recurrence II: a(4)= 2*(-1)^2 + (1*F(5)-(1/2)*(2*F(2)*F(4) + 1*F(3)^2) + (1/3)*3*F(2)^2*F(3)) = 4. (End)

Extensions

More terms and revised description from Wolfdieter Lang Mar 06 2009
Edited by N. J. A. Sloane, Mar 11 2009 at the suggestion of Vladeta Jovovic
More terms from R. J. Mathar, Mar 12 2009

A111786 Array used to obtain the complete symmetric function in n variables in terms of the elementary symmetric functions; irregular triangle T(n,k), read by rows, with n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 2, 1, -3, 1, 1, -2, -2, 3, 3, -4, 1, -1, 2, 2, 1, -3, -6, -1, 4, 6, -5, 1, 1, -2, -2, -2, 3, 6, 3, 3, -4, -12, -4, 5, 10, -6, 1, -1, 2, 2, 2, 1, -3, -6, -6, -3, -3, 4, 12, 6, 12, 1, -5, -20, -10, 6, 15, -7, 1, 1, -2, -2, -2, -2, 3, 6, 6, 3, 3, 6, 1, -4, -12, -12, -12, -12, -4, 5, 20, 10, 30, 5, -6, -30, -20, 7, 21, -8, 1, -1
Offset: 1

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

The unsigned numbers give A048996. They are not listed on pp. 831-832 of Abramowitz and Stegun (reference given in A103921). One could call these numbers M_0 (like M_1, M_2, M_3 given in A036038, A036039, A036040, resp.).
The sequence of row lengths is A000041(n) (partition numbers).
The sign is (-1)^(n + m(n,k)) with m(n,k) the number of parts of the k-th partition of n taken in the mentioned order. For m(n,k), see A036043.
The row sum is 1 for n = 1, and 0 otherwise. The unsigned row sum is 2^(n-1) = A000079(n-1) for n >= 1.
The complete symmetric polynomial is also h(n; a[1],...,a[n]) = Det(A_n) with the matrix elements of the n X n matrix A_n given by A_n(k, k+1) = 1 for 1 <= k < n, A(k, m) = a[k-m+1] for n >= k >= m >= 1, and 0 otherwise. [For an explanation of this statement, see the example for n = 4 below. See also p. 3 in MacMahon (1960).]

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
   1;
  -1,  1;
   1, -2,  1;
  -1,  2,  1, -3,  1;
   1, -2, -2,  3,  3, -4,  1;
  -1,  2,  2,  1, -3, -6, -1, 4, 6, -5, 1,
   ...
h(4; a[1],...,a[4])= -1*a[4] + 2*a[1]*a[3] + 1*a[2]^2 - 3*a[1]^2*a[2] + a[1]^4.
Consider variables x_1, x_2, x_3, x_4, and let a[1] = Sum_i x_i, a[2] = Sum_{i,j} x_i*x_j, a[3] = Sum_{i,j,k} x_i*x_j*x_k, and a[4] = x1*x2*x3*x4, where in all the sums no term is repeated twice.
Then h(4; a[1],...,a[4]) = Sum_i x_i^4 + Sum_{i,j} x_i^3*x_j + Sum_{i,j} x_i^2*x_j^2 + Sum_{i,j,k} x_i^2*x_j*x_k + Sum_{i,j,k,m} x_i*x_j*x_k*x_m, where again in all the sums no term is repeated twice. Thus, indeed, h is the complete symmetric polynomial in four variables x_1, x_2, x_3, x_4.
		

References

  • V. Krishnamurthy, Combinatorics, Ellis Horwood, Chichester, 1986, p. 55, eqs. (48) and (50).

Crossrefs

Formula

The complete symmetric row polynomials h(n; a[1], ..., a[n]):= sum k over partitions of n of T(n, k)* A[k], with A[k] := a[1]^e(k, 1) * a[2]^e(k, 2) * ... * a[n]^e(k, n) is the k-th partition of n, in Abramowitz-Stegun order (see A105805 for this reference), is [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)], for k = 1..p(n), where p(n) = A000041(n) (partition numbers).
G.f.: A(x) = 1/(1 + Sum_{j = 1..infinity} (-1)^j * a[j]).
T(n, k) is the coefficient of x^n and a[1]^e(k, 1) * a[2]^e(k, 2) * ... * a[n]^e(k, n) in A(x) if the k-th partition of n, counted using the Abramowitz-Stegun order, is [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] with e(k, j) >= 0 (and if e(k, j) = 0 then j^0 is not recorded).
T(n, k) = (-1)^(n + m(n, k)) * m(n, k)!/(Product_{j = 1..n} e(k, j)!), where m(n, k) := Sum_{j = 1..n} e(k, j), with [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] being the k-th partition of n in the mentioned order. Here m(n, k) is the number of parts of the k-th partition of n. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 15 2019
Previous Showing 11-20 of 36 results. Next