cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A050292 a(2n) = 2n - a(n), a(2n+1) = 2n + 1 - a(n) (for n >= 0).

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 37, 38, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 47, 47, 48, 48, 49, 49, 50, 51, 52, 52, 53, 54
Offset: 0

Views

Author

Keywords

Comments

Note that the first equation implies a(0)=0, so there is no need to specify an initial value.
Maximal cardinality of a double-free subset of {1, 2, ..., n}, or in other words, maximal size of a subset S of {1, 2, ..., n} with the property that if x is in S then 2x is not. a(0)=0 by convention.
Least k such that a(k)=n is equal to A003159(n).
To construct the sequence: let [a, b, c, a, a, a, b, c, a, b, c, ...] be the fixed point of the morphism a -> abc, b ->a, c -> a, starting from a(1) = a, then write the indices of a, b, c, that of a being written twice; see A092606. - Philippe Deléham, Apr 13 2004
Number of integers from {1,...,n} for which the subtraction of 1 changes the parity of the number of 1's in their binary expansion. - Vladimir Shevelev, Apr 15 2010
Number of integers from {1,...,n} the factorization of which over different terms of A050376 does not contain 2. - Vladimir Shevelev, Apr 16 2010
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. Each number n appears A026465(n+1) times. - Philippe Deléham, Oct 19 2011
Another way of stating the last two comments from Philippe Deléham: the sequence can be obtained by replacing each term of the Thue-Morse sequence A010060 by the run number that term is in. - N. J. A. Sloane, Dec 31 2013

Examples

			Examples for n = 1 through 8: {1}, {1}, {1,3}, {1,3,4}, {1,3,4,5}, {1,3,4,5}, {1,3,4,5,7}, {1,3,4,5,7}.
Binary expansion of 5 is 101, so Sum{i>=0} b_i*(-1)^i = 2. Therefore a(5) = 10/3 + 2/3 = 4. - _Vladimir Shevelev_, Apr 15 2010
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.26.
  • Wang, E. T. H. "On Double-Free Sets of Integers." Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Haskell
    a050292 n = a050292_list !! (n-1)
    a050292_list = scanl (+) 0 a035263_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Maple
    A050292:=n->add((-1)^k*floor(n/2^k), k=0..n); seq(A050292(n), n=0..100); # Wesley Ivan Hurt, Feb 14 2014
  • Mathematica
    a[n_] := a[n] = If[n < 2, 1, n - a[Floor[n/2]]]; Table[ a[n], {n, 1, 75}]
    Join[{0},Accumulate[Nest[Flatten[#/.{0->{1,1},1->{1,0}}]&,{0},7]]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    a(n)=if(n<2,1,n-a(floor(n/2)))
    
  • Python
    from sympy.ntheory import digits
    def A050292(n): return ((n<<1)+sum((0,1,-1,0)[i] for i in digits(n,4)[1:]))//3 # Chai Wah Wu, Jan 30 2025

Formula

Partial sums of A035263. Close to (2/3)*n.
a(n) = A123087(2*n) = n - A123087(n). - Max Alekseyev, Mar 05 2023
From Benoit Cloitre, Nov 24 2002: (Start)
a(1)=1, a(n) = n - a(floor(n/2));
a(n) = (2/3)*n + (1/3)*A065359(n);
more generally, for m>=0, a(2^m*n) - 2^m*a(n) = A001045(m)*A065359(n) where A001045(m) = (2^m - (-1)^m)/3 is the Jacobsthal sequence;
a(A039004(n)) = (2/3)*A039004(n);
a(2*A039004(n)) = 2*a(A039004(n));
a(A003159(n)) = n;
a(A003159(n)-1) = n-1;
a(n) mod 2 = A010060(n) the Thue-Morse sequence;
a(n+1) - a(n) = A035263(n+1);
a(n+2) - a(n) = abs(A029884(n)).
(End)
G.f.: (1/(x-1)) * Sum_{i>=0} (-1)^i*x^(2^i)/(x^(2^i)-1). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n) = Sum_{k>=0} (-1)^k*floor(n/2^k). - Benoit Cloitre, Jun 03 2003
a(A091785(n)) = 2n; a(A091855(n)) = 2n-1. - Philippe Deléham, Mar 26 2004
a(2^n) = (2^(n+1) + (-1)^n)/3. - Vladimir Shevelev, Apr 15 2010
If n = Sum_{i>=0} b_i*2^i is the binary expansion of n, then a(n) = 2n/3 + (1/3)Sum_{i>=0} b_i*(-1)^i. Thus a(n) = 2n/3 + O(log(n)). - Vladimir Shevelev, Apr 15 2010
Moreover, the equation a(3m)=2m has infinitely many solutions, e.g., a(3*2^k)=2*2^k; on the other hand, a((4^k-1)/3)=(2*(4^k-1))/9+k/3, i.e., limsup |a(n)-2n/3| = infinity. - Vladimir Shevelev, Feb 23 2011
a(n) = Sum_{k>=0} A030308(n,k)*A001045(k+1). - Philippe Deléham, Oct 19 2011
From Peter Bala, Feb 02 2013: (Start)
Product_{n >= 1} (1 + x^((2^n - (-1)^n)/3 )) = (1 + x)^2(1 + x^3)(1 + x^5)(1 + x^11)(1 + x^21)... = 1 + sum {n >= 1} x^a(n) = 1 + 2x + x^2 + x^3 + 2x^4 + 2x^5 + .... Hence this sequence lists the numbers representable as a sum of distinct Jacobsthal numbers A001045 = [1, 1', 3, 5, 11, 21, ...], where we distinguish between the two occurrences of 1 by writing them as 1 and 1'. For example, 9 occurs twice in the present sequence because 9 = 5 + 3 + 1 and 9 = 5 + 3 + 1'. Cf. A197911 and A080277. See also A120385.
(End)

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
Corrected and extended by Reinhard Zumkeller, Aug 16 2006
Extended with formula by Philippe Deléham, Oct 19 2011
Entry revised to give a simpler definition by N. J. A. Sloane, Jan 03 2014

A308546 Number of double-closed subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 24, 48, 60, 120, 180, 360, 480, 960, 1440, 2880, 3456, 6912, 10368, 20736, 27648, 55296, 82944, 165888, 207360, 414720, 622080, 1244160, 1658880, 3317760, 4976640, 9953280, 11612160, 23224320, 34836480, 69672960, 92897280
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

These are subsets containing twice any element whose double is <= n.
Also the number of subsets of {1..n} containing half of every element that is even. For example, the a(6) = 24 subsets are:
{} {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6}
{3} {1,3} {1,2,4} {1,2,3,5} {1,2,3,4,6}
{5} {1,5} {1,2,5} {1,2,3,6} {1,2,3,5,6}
{3,5} {1,3,5} {1,2,4,5}
{3,6} {1,3,6} {1,3,5,6}
{3,5,6}

Examples

			The a(6) = 24 subsets:
  {}  {4}  {2,4}  {1,2,4}  {1,2,4,5}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {5}  {3,6}  {2,4,5}  {1,2,4,6}  {1,2,4,5,6}
      {6}  {4,5}  {2,4,6}  {2,3,4,6}  {2,3,4,5,6}
           {4,6}  {3,4,6}  {2,4,5,6}
           {5,6}  {3,5,6}  {3,4,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[2*#,#<=n&]]&]],{n,0,10}]

Formula

From Charlie Neder, Jun 10 2019: (Start)
a(n) = Product_{k < n/2} (2 + floor(log_2(n/(2k+1)))).
a(0) = 1, a(n) = a(n-1) * (1 + 1/A001511(n)). (End)

Extensions

a(21)-a(36) from Charlie Neder, Jun 10 2019

A364755 Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 24, 41, 60, 99, 149, 236, 355, 552, 817, 1275, 1870, 2788, 4167, 6243, 9098, 13433, 19718, 28771, 42137, 60652, 88603, 127555, 185200, 261781, 382931, 541022, 783862, 1096608, 1595829, 2217467, 3223064, 4441073, 6465800, 8893694
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is counted under a(8).
The a(1) = 1 through a(6) = 15 subsets:
  {1}  {2}    {3}    {4}      {5}      {6}
       {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
              {2,3}  {2,4}    {2,5}    {2,6}
                     {3,4}    {3,5}    {3,6}
                     {1,2,4}  {4,5}    {4,6}
                     {2,3,4}  {1,2,5}  {5,6}
                              {1,3,5}  {1,2,6}
                              {2,4,5}  {1,3,6}
                              {3,4,5}  {1,4,6}
                                       {2,3,6}
                                       {2,5,6}
                                       {3,4,6}
                                       {3,5,6}
                                       {4,5,6}
                                       {3,4,5,6}
		

Crossrefs

Partial sums are A085489(n) - 1, complement counted by A364534.
With re-usable parts we have A288728.
The complement with n is counted by A364756, first differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,10}]

Formula

First differences of A085489.

Extensions

a(21) onwards added (using A085489) by Andrew Howroyd, Jan 13 2024

A364756 Number of subsets of {1..n} containing n and some element equal to the sum of two distinct others.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 40, 87, 196, 413, 875, 1812, 3741, 7640, 15567, 31493, 63666, 128284, 257977, 518045, 1039478, 2083719, 4174586, 8359837, 16735079, 33493780, 67020261, 134090173, 268250256, 536609131, 1073358893, 2146942626, 4294183434, 8588837984, 17178273355
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is not counted under a(8).
The subset {2,3,4,6} has pair-sum 2 + 4 = 6, so is counted under a(6).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Partial sums are A088809, non-binary A364534.
With re-usable parts we have differences of A093971, complement A288728.
The complement with n is counted by A364755, partial sums A085489(n) - 1.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}]

Formula

First differences of A088809.

Extensions

a(16) onwards added (using A088809) by Andrew Howroyd, Jan 13 2024

A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 14, 34, 74, 164, 345, 734, 1523, 3161, 6488, 13302, 27104, 55150, 111823, 226443, 457586, 923721, 1862183, 3751130, 7549354, 15184291, 30521675, 61322711, 123151315, 247230601, 496158486, 995447739, 1996668494, 4004044396, 8027966324, 16092990132, 32255168125
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the elements are not disjoint from their own first differences.

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1,2}  {1,2}    {1,2}      {1,2}
               {1,2,3}  {2,4}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {1,2,3,4}  {1,3,4}
                                   {1,4,5}
                                   {2,3,5}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For differences of all pairs we have A093971, complement A196723.
For partitions we have A363260, complement A364467.
The complement is counted by A364463.
For subset-sums instead of differences we have A364534, complement A325864.
For strict partitions we have A364536, complement A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A108917 counts knapsack partitions, strict A275972.
A325325 counts partitions with all distinct differences, strict A320347.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}]
  • Python
    from itertools import combinations
    def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # Chai Wah Wu, Sep 26 2023

Formula

a(n) = 2^n - A364463(n). - Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(32) from Chai Wah Wu, Sep 26 2023
a(33)-a(35) from Chai Wah Wu, Sep 27 2023

A364467 Number of integer partitions of n where some part is the difference of two consecutive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 13, 21, 28, 42, 55, 78, 106, 144, 187, 255, 325, 429, 554, 717, 906, 1165, 1460, 1853, 2308, 2899, 3582, 4468, 5489, 6779, 8291, 10173, 12363, 15079, 18247, 22124, 26645, 32147, 38555, 46285, 55310, 66093, 78684, 93674, 111104
Offset: 0

Views

Author

Gus Wiseman, Jul 31 2023

Keywords

Comments

In other words, the parts are not disjoint from their own first differences.

Examples

			The a(3) = 1 through a(9) = 13 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (621)
                       (2211)   (3211)    (521)      (3321)
                       (21111)  (22111)   (3221)     (4221)
                                (211111)  (4211)     (4311)
                                          (22211)    (5211)
                                          (32111)    (22221)
                                          (221111)   (32211)
                                          (2111111)  (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For all differences of pairs parts we have A363225, complement A364345.
The complement is counted by A363260.
For subsets of {1..n} we have A364466, complement A364463.
The strict case is A364536, complement A364464.
These partitions have ranks A364537.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Comments

In other words, partitions whose parts are not disjoint from their first differences.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
  78: {1,2,6}
  84: {1,1,2,4}
  90: {1,2,2,3}
  96: {1,1,1,1,1,2}
		

Crossrefs

For all differences of pairs the complement is A364347, counted by A364345.
For all differences of pairs we have A364348, counted by A363225.
Subsets of {1..n} of this type are counted by A364466, complement A364463.
These partitions are counted by A364467, complement A363260.
The strict case is A364536, complement A364464.
A050291 counts double-free subsets, complement A088808.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]

A088808 Number of subsets of {1, ..., n} that are not double-free.

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 34, 68, 160, 320, 736, 1472, 3136, 6272, 13504, 27008, 56176, 112352, 234064, 468128, 954976, 1909952, 3913504, 7827008, 15878656, 31757312, 64413184, 128826368, 259449856, 518899712, 1046785024, 2093570048, 4207876096, 8415752192
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2003

Keywords

Comments

a(n) = 2^n - A050291(n); a(2*k+1) = a(2*k)*2;
a non-double-free subset contains at least one subset {x,y} with y=2*x.

Crossrefs

Programs

  • Mathematica
    A050291[n_] := A050291[n] = If[n == 1, 2, With[{b = IntegerExponent[2n, 2]}, A050291[n - 1] Fibonacci[b + 2]/Fibonacci[b + 1]]];
    a[n_] := If[n == 0, 0, 2^n - A050291[n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 10 2021 *)

A045691 Number of binary words of length n with autocorrelation function 2^(n-1)+1.

Original entry on oeis.org

0, 1, 1, 3, 5, 11, 19, 41, 77, 159, 307, 625, 1231, 2481, 4921, 9883, 19689, 39455, 78751, 157661, 315015, 630337, 1260049, 2520723, 5040215, 10081661, 20160841, 40324163, 80643405, 161291731, 322573579, 645157041, 1290294393, 2580608475, 5161177495
Offset: 0

Views

Author

Torsten Sillke (torsten.sillke(AT)lhsystems.com)

Keywords

Comments

From Gus Wiseman, Jan 22 2022: (Start)
Also the number of subsets of {1..n} containing n but without adjacent elements of quotient 1/2. The Heinz numbers of these sets are a subset of the squarefree terms of A320340. For example, the a(1) = 1 through a(6) = 19 subsets are:
{1} {2} {3} {4} {5} {6}
{1,3} {1,4} {1,5} {1,6}
{2,3} {3,4} {2,5} {2,6}
{1,3,4} {3,5} {4,6}
{2,3,4} {4,5} {5,6}
{1,3,5} {1,4,6}
{1,4,5} {1,5,6}
{2,3,5} {2,5,6}
{3,4,5} {3,4,6}
{1,3,4,5} {3,5,6}
{2,3,4,5} {4,5,6}
{1,3,4,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,3,4,5,6}
{2,3,4,5,6}
(End)

Crossrefs

If a(n) counts subsets of {1..n} with n and without adjacent quotients 1/2:
- The version with quotients <= 1/2 is A018819, partitions A000929.
- The version with quotients < 1/2 is A040039, partitions A342098.
- The version with quotients >= 1/2 is A045690(n+1), partitions A342094.
- The version with quotients > 1/2 is A045690, partitions A342096.
- Partitions of this type are counted by A350837, ranked by A350838.
- Strict partitions of this type are counted by A350840.
- For differences instead of quotients we have A350842, strict A350844.
- Partitions not of this type are counted by A350846, ranked by A350845.
A000740 = relatively prime subsets of {1..n} containing n.
A002843 = compositions with all adjacent quotients >= 1/2.
A050291 = double-free subsets of {1..n}.
A154402 = partitions with all adjacent quotients 2.
A308546 = double-closed subsets of {1..n}, with maximum: shifted right.
A323092 = double-free integer partitions, ranked by A320340, strict A120641.
A326115 = maximal double-free subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]!=1/2,{i,2,Length[#]}]&]],{n,0,15}] (* Gus Wiseman, Jan 22 2022 *)

Formula

a(2*n-1) = 2*a(2*n-2) - a(n) for n >= 2; a(2*n) = 2*a(2*n-1) + a(n) for n >= 2.

Extensions

More terms from Sean A. Irvine, Mar 18 2021

A365070 Number of subsets of {1..n} containing n and some element equal to the sum of two other (possibly equal) elements.

Original entry on oeis.org

0, 0, 1, 1, 5, 9, 24, 46, 109, 209, 469, 922, 1932, 3858, 7952, 15831, 32214, 64351, 129813, 259566, 521681, 1042703, 2091626, 4182470, 8376007, 16752524, 33530042, 67055129, 134165194, 268328011, 536763582, 1073523097, 2147268041, 4294505929, 8589506814, 17178978145
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

These are binary sum-full sets where elements can be re-used. The complement is counted by A288728. The non-binary version is A365046, complement A124506. For non-re-usable parts we have A364756, complement A085489.

Examples

			The subset {1,3} has no element equal to the sum of two others, so is not counted under a(3).
The subset {3,4,5} has no element equal to the sum of two others, so is not counted under a(5).
The subset {1,3,4} has 4 = 1 + 3, so is counted under a(4).
The subset {2,4,5} has 4 = 2 + 2, so is counted under a(5).
The a(0) = 0 through a(5) = 9 subsets:
  .  .  {1,2}  {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,4,5}
                        {1,3,4}    {2,3,5}
                        {2,3,4}    {2,4,5}
                        {1,2,3,4}  {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement w/o re-usable parts is A085489, first differences of A364755.
First differences of A093971.
The non-binary complement is A124506, first differences of A326083.
The complement is counted by A288728, first differences of A007865.
For partitions (not requiring n) we have A363225, strict A363226.
The case without re-usable parts is A364756, firsts differences of A088809.
The non-binary version is A365046, first differences of A364914.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.
A365006 counts no positive combination-full strict ptns.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#,Total /@ Tuples[#,2]]!={}&]], {n,0,10}]

Formula

First differences of A093971.

Extensions

a(21) onwards added (using A093971) by Andrew Howroyd, Jan 13 2024
Previous Showing 11-20 of 30 results. Next