cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A059453 Sophie Germain primes (A005384) that are not safe primes (A005385).

Original entry on oeis.org

2, 3, 29, 41, 53, 89, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Except for 2 and 3 these primes are congruent to 5 or 11 modulo 12.
Introducing terms of Cunningham chains of first kind.

Examples

			89 is a term because (89-1)/2 = 44 is not prime, but 2*89 + 1 = 179 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[(p-1)/2],If[PrimeQ[2*p+1],AppendTo[lst,p]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 24 2009 *)
    Select[Prime[Range[300]],PrimeQ[2#+1]&&!PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Nov 10 2017 *)
  • PARI
    is(p) = isprime(p) && isprime(2*p+1) && if(p > 2, !isprime((p-1)/2), 1); \\ Amiram Eldar, Jul 15 2024
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059453_gen(): # generator of terms
        return filter(lambda p:not isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1)))
    A059453_list = list(islice(A059453_gen(),10)) # Chai Wah Wu, Jul 12 2022
    

Formula

A156660(a(n))*(1-A156659(a(n))) = 1. - Reinhard Zumkeller, Feb 18 2009

A059766 Initial (unsafe) primes of Cunningham chains of first type with length exactly 6.

Original entry on oeis.org

89, 63419, 127139, 405269, 810809, 1069199, 1178609, 1333889, 1598699, 1806089, 1958249, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4444829, 4664249, 4894889, 4897709, 5132999, 5215499, 5238179, 6026309, 6059519, 6088529, 6490769, 6676259
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special terms of A059453. Not identical to A023330 of which 1122659, 2164229, 2329469, ..., etc. are omitted since they have exact length 7 or larger.
Unsafe primes starting complete chains of length 6.

Examples

			89 is a term because (89-1)/2 = 44 and 64*89+63 = 5759 = 13*443 are composites, while 89, 179, 359, 719, 1439, and 2879 are primes.
1122659 is not a term because it initiates a chain of length 7.
4658939 is not a term because (4658939-1)/2 = 2329469 is prime. - _Sean A. Irvine_, Oct 09 2022
		

Crossrefs

Extensions

Entry revised by N. J. A. Sloane Apr 01 2006
a(12) onward corrected and extended by Sean A. Irvine, Oct 09 2022

A075712 Rearrangement of primes into Germain groups (or Cunningham chains).

Original entry on oeis.org

2, 5, 11, 23, 47, 3, 7, 13, 17, 19, 29, 59, 31, 37, 41, 83, 167, 43, 53, 107, 61, 67, 71, 73, 79, 89, 179, 359, 719, 1439, 2879, 97, 101, 103, 109, 113, 227, 127, 131, 263, 137, 139, 149, 151, 157, 163, 173, 347, 181, 191, 383, 193, 197, 199, 211, 223, 229, 233
Offset: 1

Views

Author

Zak Seidov, Oct 03 2002

Keywords

Comments

In each group, p(i+1) = 2*p(i)+1.
The groups are also known as Cunningham chains of the first kind.

Examples

			The groups are:
{2, 5, 11, 23, 47},
{3, 7},
{13},
{17},
{19},
{29, 59},
{31},
{37},
{41, 83, 167},
{43},
{53, 107},
{61},
{67},
{71},
{73},
{79},
{89, 179, 359, 719, 1439, 2879},
{97},
{101},
{103},
{109},
{113, 227},
{127},
{131, 263},
{137},
{139},
...
		

Crossrefs

See also A181697.
See A059456 for initial terms, A338945 for lengths.

Programs

  • Mathematica
    Block[{a = {2}, j = 1, k, p}, Do[k = j; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] + 1], While[! FreeQ[a, Set[p, Prime[k]]], k++]; j++; Set[a, Append[a[[1 ;; -2]], p]]], 10^3]; a] (* Michael De Vlieger, Nov 17 2020 *)
  • PARI
    first(n) = my(res=List([2,5,11,23,47])); forprime(p=3, oo, if(!isprime((p-1)>>1), listput(res,p); c = 2*p+1; while(isprime(c), listput(res,c); c=2*c+1)); if(#res>n,return(res))); res \\ David A. Corneth, Nov 13 2021

Extensions

Edited by N. J. A. Sloane, Nov 13 2021
More terms from David A. Corneth, Nov 13 2021

A156542 Number of distinct Sophie Germain prime factors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 2, 0, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 0, 2, 1, 1, 1, 2, 0, 1, 2, 2, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2009

Keywords

Crossrefs

Programs

Formula

a(n) <= A001221(n).
a(A156541(n)) = A001221(A156541(n)); a(A156543(n)) = 0.
a(A005384(n)) = 1; a(A053176(n)) = 0.
a(n) = Sum_{p|n} A101264(p), where p is a prime. - Ridouane Oudra, Aug 25 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A005384(k) (see A005384 for an estimate of this sum). - Amiram Eldar, Jun 03 2024

A068497 Primes p such that 2*p+1 and 2*p-1 are composites.

Original entry on oeis.org

13, 17, 43, 47, 59, 61, 67, 71, 73, 101, 103, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 223, 227, 241, 257, 263, 269, 277, 283, 311, 313, 317, 347, 349, 353, 373, 383, 389, 397, 401, 409, 421, 433, 449, 457, 461, 463, 467, 479, 487, 503, 521
Offset: 1

Views

Author

Benoit Cloitre, Mar 25 2002

Keywords

Comments

Subsequence of A053176. - Michel Marcus, Jan 12 2015
The sequence is infinite. Among others it contains all the primes of the form 15m+/-2. - Emmanuel Vantieghem, Sep 19 2016

Programs

  • GAP
    Filtered([1..530],p->IsPrime(p) and not IsPrime(2*p+1) and not IsPrime(2*p-1)); # Muniru A Asiru, Oct 16 2018
  • Magma
    [p: p in PrimesUpTo(600) | not IsPrime(2*p+1) and not IsPrime(2*p-1)]; // Vincenzo Librandi, Jan 20 2015
    
  • Maple
    select(p->isprime(p) and not isprime(2*p+1) and not isprime(2*p-1),[$1..530]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    lst={};Do[p=Prime[n];If[ !PrimeQ[2*p-1]&&!PrimeQ[2*p+1],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 12 2010 *)
    Select[Prime[Range[500]], ! PrimeQ[2*# - 1] && ! PrimeQ[2*# + 1] &] (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    listp(nn) = {forprime(p=2, nn, if (!isprime(2*p-1) && !isprime(2*p+1), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
    

A043297 Primes p such that B(4*p) has denominator 30 where B(2n) are the Bernoulli numbers.

Original entry on oeis.org

2, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, 211, 223, 227, 229, 241, 257, 263, 269, 271, 283, 311, 313, 317, 331, 337, 347, 349, 353, 367, 379, 383, 389, 397, 401, 421, 439, 449, 457, 461, 463, 467, 479, 503, 521
Offset: 1

Views

Author

Benoit Cloitre, Mar 24 2002

Keywords

Comments

Complement of A087634, primes p such that phi(k) = 4p has a solution, where phi is Euler's totient function.
The sequences a(n), A005384 and A023212 form a partition of the set of primes > 3: Using von Staudt-Clausen formula the divisors of 4p increased by 1 are {2,3,5,p+1,2p+1,4p+1}, p+1 is clearly an even number, and if 2p+1 and 4p+1 are not prime, then denom(B(4p))=30. - Enrique Pérez Herrero, Aug 15 2011
Also 2 with the primes p such that both 2*p+1 and 4*p+1 are composite: A210684. For these numbers k > 2 the equation: phi(n)=k*tau(n), where phi is A000010 and tau is A000005, has no solutions: A112954(a(n))=0. - Enrique Pérez Herrero, May 12 2012

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], Denominator[BernoulliB[4# ]]==30&] (* T. D. Noe, Feb 19 2004 *)
    Select[Prime[Range[100]],!PrimeQ[4#+1]&&!PrimeQ[2#+1]||(#==2)&] (* Enrique Pérez Herrero, Aug 16 2011 *)

A307390 Primes p such that 2*p-1 is not prime.

Original entry on oeis.org

5, 11, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 223, 227, 233, 239, 241, 251, 257, 263, 269, 277, 281, 283, 293, 311, 313, 317, 347, 349, 353, 359, 373, 383, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Robert Israel, Apr 17 2019

Keywords

Comments

Primes not in A005382.

Examples

			a(3) = 13 is in the sequence because 13 is prime but 2*13-1 = 25 is not.
		

Crossrefs

Includes A007528.

Programs

  • Maple
    select(t -> isprime(t) and not isprime(2*t-1), [seq(i,i=3..1000,2)]);

Formula

a(n) = A109274(n) + 1. - Bhavik Mehta, Aug 14 2024

A053177 Odd composite k such that (k-1)/2 is prime.

Original entry on oeis.org

15, 27, 35, 39, 63, 75, 87, 95, 119, 123, 135, 143, 147, 159, 195, 203, 207, 215, 219, 255, 275, 279, 299, 303, 315, 327, 335, 363, 387, 395, 399, 423, 447, 455, 459, 483, 515, 527, 539, 543, 555, 567, 615, 623, 627, 635, 663, 675, 695, 699, 707, 735, 747
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Composite numbers produced in A053176.

Examples

			a(3)=35 and 35-1=34, 34/2=17, prime.
		

Crossrefs

Programs

  • Mathematica
    Select[2 Prime@ Range@ 74 + 1, CompositeQ] (* Michael De Vlieger, Jul 13 2015 *)
    Select[Range[1,801,2],CompositeQ[#]&&PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Apr 01 2019 *)
  • PARI
    main(size)={my(v=vector(size),i,t=1);for(i=1, size, while(isprime(2*prime(t)+1), t++); v[i]=2*prime(t)+1;t++;);return(v)} /* Anders Hellström, Jul 13 2015 */

Formula

From the composite, subtract 1, divide by 2 and result is a prime.

Extensions

Definition clarified by Peter Munn, Oct 26 2017

A230117 Primes p such that 2*p+1 is prime and 2*p+3 is not prime.

Original entry on oeis.org

3, 11, 23, 41, 83, 131, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 593, 641, 653, 683, 719, 761, 911, 953, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1511, 1601, 1811, 1889, 1901, 1931, 1973, 2003, 2039, 2069, 2141
Offset: 1

Views

Author

Vincenzo Librandi, Oct 10 2013

Keywords

Comments

Intersection of A005384 and A163769. - Felix Fröhlich, Jan 14 2017

Examples

			23 is in the sequence because 2*23+1=47 (prime) and 2*23+3=49 (not prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)| IsPrime(2*p+1) and not IsPrime(2*p+3)];
    
  • Mathematica
    Select[Range[10^6],PrimeQ[#]&& PrimeQ[2#+1]&&!PrimeQ[2#+3]&]
  • PARI
    is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && !ispseudoprime(2*n+3) \\ Felix Fröhlich, Jan 14 2017

A230039 Primes p such that 2*p+1 is not prime and 2*p+3 is prime.

Original entry on oeis.org

7, 13, 17, 19, 43, 47, 67, 73, 97, 127, 137, 139, 157, 167, 193, 197, 199, 223, 227, 229, 269, 277, 283, 307, 337, 349, 353, 379, 383, 397, 409, 439, 463, 467, 487, 503, 523, 547, 557, 563, 599, 607, 613, 617, 643, 647, 739, 773, 797, 827, 853, 859, 887, 929
Offset: 1

Views

Author

Vincenzo Librandi, Oct 10 2013

Keywords

Comments

Intersection of A023204 and A053176. - Felix Fröhlich, Jan 14 2017

Examples

			43 is in the sequence because 2*43+1=87 (not prime) and 2*43+3=89 (prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|not IsPrime(2*p+1) and IsPrime(2*p+3)];
    
  • Mathematica
    Select[Range[10^5],PrimeQ[#]&& !PrimeQ[2#+1]&& PrimeQ[2#+3]&]
  • PARI
    is(n) = ispseudoprime(n) && !ispseudoprime(2*n+1) && ispseudoprime(2*n+3) \\ Felix Fröhlich, Jan 14 2017
Previous Showing 11-20 of 38 results. Next