cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 71 results. Next

A256970 Smallest prime divisor of 4*n^2+1.

Original entry on oeis.org

5, 17, 37, 5, 101, 5, 197, 257, 5, 401, 5, 577, 677, 5, 17, 5, 13, 1297, 5, 1601, 5, 13, 29, 5, 41, 5, 2917, 3137, 5, 13, 5, 17, 4357, 5, 13, 5, 5477, 53, 5, 37, 5, 7057, 13, 5, 8101, 5, 8837, 13, 5, 73, 5, 29, 17, 5, 12101, 5, 41, 13457, 5
Offset: 1

Views

Author

N. J. A. Sloane, Apr 19 2015

Keywords

Comments

a(n) = A020639(A053755(n)).
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017

References

  • Richard Friedberg, An Adventurer's Guide to Number Theory, McGraw-Hill, NY, 1968.
  • Popular Computing (Calabasas, CA), Friedberg's Sequence, Vol. 5 (No. 46, Jan 1977), page PC46-2.

Crossrefs

A bisection of A125256.

Programs

A057781 a(n) = n^4+4 = (n^2-2*n+2)*(n^2+2*n+2) = ((n-1)^2+1)*((n+1)^2+1).

Original entry on oeis.org

4, 5, 20, 85, 260, 629, 1300, 2405, 4100, 6565, 10004, 14645, 20740, 28565, 38420, 50629, 65540, 83525, 104980, 130325, 160004, 194485, 234260, 279845, 331780, 390629, 456980, 531445, 614660, 707285, 810004, 923525, 1048580, 1185925
Offset: 0

Views

Author

Henry Bottomley, Nov 04 2000

Keywords

References

  • Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1, Nr. 11, p. 19. [From Reinhard Zumkeller, Apr 11 2010]

Crossrefs

Programs

Formula

G.f.: -(5*x^4-5*x^3+35*x^2-15*x+4) / (x-1)^5. - Colin Barker, Mar 29 2013
a(n) = A002523(n) + 3.
a(n) = A002522(n-1) * A002522(n+1).
Sum_{k=0..n} A033999(k)*A016755(k)/a(k) = A033999(n)*(n+1)/A053755(n+1), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = (n^2)^2 + 2^2 = (n^2-2)^2 + (2*n)^2. - Thomas Ordowski, Sep 15 2015
a(n) = A272298(3*n)/3^4. - Bruno Berselli, Apr 29 2016
Sum_{n>=0} 1/a(n) = (Pi*coth(Pi) + 1)/8. - Amiram Eldar, Oct 04 2021

A108211 a(n) = 16*n^2 + 1.

Original entry on oeis.org

17, 65, 145, 257, 401, 577, 785, 1025, 1297, 1601, 1937, 2305, 2705, 3137, 3601, 4097, 4625, 5185, 5777, 6401, 7057, 7745, 8465, 9217, 10001, 10817, 11665, 12545, 13457, 14401, 15377, 16385, 17425, 18497, 19601, 20737, 21905, 23105, 24337, 25601, 26897, 28225, 29585
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 15 2005

Keywords

Comments

Area of a Maltese cross conventionally inscribed in a 5n X 5n-grid.
Areas of some other crosses, each made from unit squares, as shown in Weisstein's illustrations: Greek Cross = x-pentomino = 5. Latin Cross = 6. Saint Andrew's cross = crux decussata = 9. Saint Anthony's Cross = tau cross = crux commissa = 10. Gaullist Cross = cross of Lorraine or patriarchal cross = 13. Papal Cross = 22. - Jonathan Vos Post, Jun 18 2005
The identity (16*n^2 + 1)^2 - (64*n^2 + 8)*(2*n)^2 = 1 can be written as a(n)^2 - A158488(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 08 2012
Sequence found by reading the line from 17, in the direction 17, 65, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012
Conjecture: a(n) = floor(1/(1/(4*n) - log(2) + 1/(n+1) + 1/(n+2) + ... + 1/(2*n))). - Clark Kimberling, Sep 09 2014

Crossrefs

Programs

Formula

a(n) = A002522(4*n) = A016802(n) + 1.
G.f.: x*(17+14*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 08 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*coth(Pi/4)/8 - 1/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - Pi*csch(Pi/4)/8. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/4)*sinh(Pi/sqrt(8)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/4)*csch(Pi/4). (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: exp(x)*(16*x^2 + 16*x + 1) - 1.
a(n) = A053755(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A211412 a(n) = 4*n^4 + 1.

Original entry on oeis.org

5, 65, 325, 1025, 2501, 5185, 9605, 16385, 26245, 40001, 58565, 82945, 114245, 153665, 202501, 262145, 334085, 419905, 521285, 640001, 777925, 937025, 1119365, 1327105, 1562501, 1827905, 2125765, 2458625, 2829125, 3240001, 3694085, 4194305, 4743685, 5345345, 6002501, 6718465, 7496645
Offset: 1

Views

Author

Alonso del Arte, Feb 10 2013

Keywords

Comments

Except for the first term, all terms are composite. a(n) is divisible by 5 if n is not.
Long before Aurifeuille, Euler discovered that 4n^4 + 1 = (2n^2 + 2n + 1)*(2n^2 - 2n + 1). For example, 325 = 4 * 3^4 + 1 = (2 * 3^2 + 2 * 3 + 1)*(2 * 3^2 - 2 * 3 + 1) = 25 * 13. Euler shared this discovery with Goldbach in a letter dated August 28, 1742. [Euler identity corrected by Graham Holmes, Jun 02 2023]
The terms of the sequence are the arithmetic mean of eight numbers located on concentric circles (see Avilov link). - Nicolay Avilov, Jan 22 2021

References

  • Don Knuth, The Art of Computer Programming: Seminumerical Algorithms, 3rd ed., New York: Addison-Wesley Professional (1997), p. 392.
  • David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005), p. 15.

Crossrefs

Cf. A207262 (subset).
After the first term, subsequence of A121944.
Cf. A053755.

Programs

Formula

G.f.: -x*(x^4+50*x^2+40*x+5) / (x-1)^5. - Colin Barker, Feb 11 2013
a(n) = A053755(n^2). - Michel Marcus, Sep 18 2015
a(n) = (2*n^2)^2 + 1^2 = (2*n^2-1)^2 + (2*n)^2. - Thomas Ordowski, Sep 18 2015
a(n) = A001844(n) * A001844(n+1) = A141046(n) + 1 = (A000583(n) * 4 ) + 1 = A016742(n) + A173121(n) + 1. - Bruce J. Nicholson, Jun 06 2017
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/4 - 1/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - sech(Pi/2)*Pi/4. (End)

A050533 Thickened pyramidal numbers: a(n) = 2*(n+1)*n + Sum_{i=1..n} (4*i*(i-1) + 1).

Original entry on oeis.org

0, 5, 22, 59, 124, 225, 370, 567, 824, 1149, 1550, 2035, 2612, 3289, 4074, 4975, 6000, 7157, 8454, 9899, 11500, 13265, 15202, 17319, 19624, 22125, 24830, 27747, 30884, 34249, 37850, 41695, 45792, 50149, 54774, 59675, 64860, 70337, 76114, 82199, 88600, 95325
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

This sequence is the partial sums of A053755. - J. M. Bergot, May 31 2012

Crossrefs

Programs

  • Magma
    I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Apr 27 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,5,22,59},40] (* Harvey P. Dale, May 08 2012 *)
  • PARI
    a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012
    

Formula

a(n) = (1/3)*n*(5 + 6*n + 4*n^2) = binomial(2*n+1, 3) + 2*(n+1)*n = A000447(n) + 4*A000217(n).
G.f.: x*(5+2*x+x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
E.g.f.: exp(x)*x*(15 + 18*x + 4*x^2)/3. - Elmo R. Oliveira, Aug 08 2025

A081345 First row in maze arrangement of natural numbers A081344.

Original entry on oeis.org

1, 4, 5, 16, 17, 36, 37, 64, 65, 100, 101, 144, 145, 196, 197, 256, 257, 324, 325, 400, 401, 484, 485, 576, 577, 676, 677, 784, 785, 900, 901, 1024, 1025, 1156, 1157, 1296, 1297, 1444, 1445, 1600, 1601, 1764, 1765, 1936, 1937, 2116, 2117, 2304, 2305, 2500
Offset: 0

Views

Author

Paul Barry, Mar 19 2003

Keywords

Crossrefs

Cf. A081346.

Programs

  • Magma
    [n^2+n+1-n*(-1)^n: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
  • Mathematica
    CoefficientList[Series[(5 x^3 - x^2 + 3 x + 1) / ((1 - x)^3 (1 + x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 08 2013 *)

Formula

a(n) = n^2 + n + 1 - n*(-1)^n = n^2 + n + 1 + n*(-1)^(n+1).
a(2*n) = A053755(n), a(2*n+1) = 4 * A004120(n).
G.f.: (5*x^3-x^2+3*x+1)/((1-x)^3*(1+x)^2). [Colin Barker, Sep 03 2012]

A108100 a(n) = (2*n-1)^2 + (2*n+1)^2.

Original entry on oeis.org

2, 10, 34, 74, 130, 202, 290, 394, 514, 650, 802, 970, 1154, 1354, 1570, 1802, 2050, 2314, 2594, 2890, 3202, 3530, 3874, 4234, 4610, 5002, 5410, 5834, 6274, 6730, 7202, 7690, 8194, 8714, 9250, 9802, 10370, 10954, 11554, 12170, 12802, 13450, 14114, 14794, 15490
Offset: 0

Views

Author

Dorthe Roel (dorthe_roel(AT)hotmail.com or dorthe.roel1(AT)skolekom.dk), Jun 07 2005

Keywords

Crossrefs

Apart from leading term, same as A008527.

Programs

Formula

From R. J. Mathar, Aug 24 2008: (Start)
O.g.f.: 2*(1 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 2*A053755(n). (End)
a(n) = a(-n); a(n) + a(-n) = A158444(n). - Bruno Berselli, Sep 06 2011
a(n) = 2*(A000466(n) + 2). - Martin Ettl, Nov 12 2012
From Elmo R. Oliveira, Nov 16 2024: (Start)
E.g.f.: 2*exp(x)*(1 + 4*x + 4*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A143861 Ulam's spiral (NNE spoke).

Original entry on oeis.org

1, 14, 59, 136, 245, 386, 559, 764, 1001, 1270, 1571, 1904, 2269, 2666, 3095, 3556, 4049, 4574, 5131, 5720, 6341, 6994, 7679, 8396, 9145, 9926, 10739, 11584, 12461, 13370, 14311, 15284, 16289, 17326, 18395, 19496, 20629, 21794, 22991, 24220
Offset: 1

Views

Author

Keywords

Comments

Stanislaw M. Ulam was doodling during the presentation of a "long and very boring paper" at a scientific meeting in 1963. The spiral is its result. Note that conforming to trigonometric conventions, the spiral begins on the abscissa and rotates counterclockwise. Other spirals, orientations, direction of rotation and initial values exist, even in the OEIS.
Also sequence found by reading the segment (1, 14) together with the line from 14, in the direction 14, 59, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 05 2012

References

  • Chris K. Caldwell & G. L. Honaker, Jr., Prime Curios! The Dictionary of Prime Number Trivia, CreateSpace, Sept 2009, pp. 2-3.

Crossrefs

Programs

  • GAP
    List([1..40], n-> ((32*n-35)^2 +55)/64); # G. C. Greubel, Nov 09 2019
  • Magma
    [((32*n-35)^2 +55)/64: n in [1..40]]; // G. C. Greubel, Nov 09 2019
    
  • Maple
    seq( ((32*n-35)^2 +55)/64, n=1..40); # G. C. Greubel, Nov 09 2019
  • Mathematica
    (* From Robert G. Wilson v, Oct 29 2011 *)
    f[n_]:= 16n^2 -35n +20; Array[f, 40]
    LinearRecurrence[{3,-3,1}, {1,14,59}, 40]
    FoldList[#1 + #2 &, 1, 32Range@ 10 - 19] (* End *)
    ((32*Range[40] -35)^2 +55)/64 (* G. C. Greubel, Nov 09 2019 *)
  • PARI
    a(n)=16*n^2-35*n+20 \\ Charles R Greathouse IV, Oct 29 2011
    
  • Sage
    [((32*n-35)^2 +55)/64 for n in (1..40)] # G. C. Greubel, Nov 09 2019
    

Formula

a(n) = 16*n^2 - 35*n + 20. - R. J. Mathar, Sep 08 2008
G.f.: x*(1 + 11*x + 20*x^2)/(1-x)^3. - Colin Barker, Aug 03 2012
E.g.f.: -20 + (20 - 19*x + 16*x^2)*exp(x). - G. C. Greubel, Nov 09 2019

A144965 a(n) = 4*n*(4*n^2 + 1).

Original entry on oeis.org

0, 20, 136, 444, 1040, 2020, 3480, 5516, 8224, 11700, 16040, 21340, 27696, 35204, 43960, 54060, 65600, 78676, 93384, 109820, 128080, 148260, 170456, 194764, 221280, 250100, 281320, 315036, 351344, 390340, 432120, 476780, 524416, 575124, 629000, 686140, 746640
Offset: 0

Views

Author

Luc Comeau-Montasse, Sep 27 2008

Keywords

Comments

(a(n))^2 + (n*a(n)+1)^2 is always a perfect square.

Crossrefs

Programs

  • Magma
    I:=[0, 20, 136, 444]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[4*x*(5+14*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,20,136,444},50] (* Harvey P. Dale, Aug 07 2022 *)

Formula

G.f.: 4*x*(5+14*x+5*x^2)/(1-x)^4. - Colin Barker, May 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: 4*x*(5 + 2*x)*(1 + 2*x)*exp(x).
a(n) = 4*A317297(n+1) = A008586(n)*A053755(n). (End)

A167991 Blocks of size 2n, each with 2n-1 replicas of 2n followed by 2n+1; n=1, 2, 3, ...

Original entry on oeis.org

2, 3, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Paul Curtz, Nov 16 2009

Keywords

Comments

First differences of A167381.
The sum of the terms in block n is 4*n^2+1 = A053755(n).

Examples

			(2, 3), (4, 4, 4, 5), (6, 6, 6, 6, 6, 7), (8, 8, 8, 8, 8, 8, 8, 9), ...
		

Programs

  • Mathematica
    r[1] = Range[4];
    r[n_] := r[n] = Range[r[n-1][[-1]]+1, r[n-1][[-1]] + (2n)^2];
    s[n_] := Partition[r[n], Sqrt[Length[r[n]]]][[All, n]];
    A167991 = Table[s[n], {n, 1, 9}] // Flatten // Differences (* Jean-François Alcover, Mar 27 2017 *)
Previous Showing 41-50 of 71 results. Next