cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A054991 Number of prime divisors of n! - 1 (counted with multiplicity).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 3, 2, 4, 1, 2, 1, 5, 2, 3, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 1, 3, 1, 1, 2, 3, 2, 5, 1, 4, 2, 4, 4, 7, 4, 5, 5, 2, 4, 3, 2, 5, 5, 4, 6, 6, 5, 6, 5, 2, 3, 4, 4, 5, 4, 6, 4, 7, 2, 6, 5, 5, 3, 4, 5, 7, 3, 5, 4, 2, 4, 4, 4, 4, 6, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The series is related to the product of primes and the "proof" of the existence of infinite many prime twins.

Examples

			a(2)=0 because 2! - 1 = 1 (and this is not a prime number) a(5)=2 because 5! -1 = 119 = 7 * 17
		

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
More terms from Amiram Eldar, Oct 03 2019

A057938 Number of prime factors of 6^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 4, 2, 3, 3, 2, 2, 4, 3, 5, 3, 3, 6, 3, 3, 6, 4, 3, 4, 4, 4, 5, 5, 4, 9, 2, 3, 6, 3, 11, 5, 4, 3, 9, 5, 4, 7, 2, 3, 7, 5, 2, 7, 7, 6, 8, 4, 5, 10, 8, 6, 7, 3, 2, 6, 3, 2, 10, 3, 8, 11, 5, 5, 6, 7, 4, 5, 6, 5, 10, 5, 6, 11, 6, 6, 8, 4, 5, 8, 8, 5, 11, 4, 3, 16, 12, 4, 5, 5, 10, 4, 4, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), this sequence (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(6^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[6^Range[100]+1] (* Harvey P. Dale, Mar 10 2013 *)

Formula

a(n) = A057955(2n) - A057955(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062394(n)). - Amiram Eldar, Feb 02 2020

A069061 Sum of divisors of 2^n+1.

Original entry on oeis.org

4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013

Formula

a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013

Extensions

More terms from Amiram Eldar, Oct 04 2019

A053285 Totient of 2^n+1.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 48, 84, 256, 324, 800, 1364, 3840, 5460, 12544, 19800, 65536, 87380, 186624, 349524, 986880, 1365336, 3345408, 5592404, 16515072, 20250000, 52306176, 84768120, 252645120, 351847488, 760320000, 1431655764, 4288266240, 5632621632, 13628740608
Offset: 0

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Examples

			It is a power of 2 iff n is a Fermat prime.
		

Crossrefs

Programs

Formula

a(n) = A000010(A000051(n)).

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 12 2015

A054989 Number of prime divisors of -1 + (product of first n primes).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 3, 2, 3, 3, 2, 2, 4, 3, 1, 2, 2, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 2, 3, 3, 2, 4, 3, 4, 2, 4, 4, 7, 4, 3, 3, 4, 4, 3, 3, 1, 3, 1, 4, 3, 5, 5, 4, 4, 6, 5, 5, 3, 4, 3, 4, 4, 3, 4, 2, 3, 4
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Examples

			a(4)=2 because 2*3*5*7 - 1 = 209 = 11*19
		

Crossrefs

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]-1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#] & /@ (FoldList[Times, Prime[Range[81]]] - 1) (* Harvey P. Dale, Mar 11 2017 *)

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(42)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A054990 Number of prime divisors of n! + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 2, 2, 3, 5, 3, 6, 2, 2, 3, 3, 4, 2, 2, 2, 1, 2, 3, 5, 4, 4, 5, 2, 5, 6, 1, 2, 4, 7, 1, 3, 4, 3, 3, 3, 4, 2, 5, 5, 6, 4, 4, 2, 2, 4, 3, 4, 2, 4, 4, 3, 5, 3, 4, 5, 4, 5, 6, 5, 2, 7, 1, 4, 2, 3, 1, 6, 3, 4, 7, 3, 3, 3, 5, 5, 4, 3, 8, 3, 6, 2, 4, 3, 4, 5, 6, 6, 5, 5, 4, 5
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The smallest k! with n prime factors occurs for n in A060250.
103!+1 = 27437*31084943*C153, so a(103) is unknown until this 153-digit composite is factored. a(104) = 4 and a(105) = 6. - Rick L. Shepherd, Jun 10 2003

Examples

			a(2)=2 because 4! + 1 = 25 = 5*5
		

Crossrefs

Cf. A000040 (prime numbers), A001359 (twin primes).
Cf. A066856 (number of distinct prime divisors of n!+1), A084846 (mu(n!+1)).

Programs

  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[q!+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    A054990[n_Integer] := PrimeOmega[n! + 1]; Table[A054990[n], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
  • PARI
    for(n=1,64,print1(bigomega(n!+1),","))

Extensions

More terms from Robert G. Wilson v, Mar 23 2001
More terms from Rick L. Shepherd, Jun 10 2003

A054988 Number of prime divisors of 1 + (product of first n primes), with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3, 3, 2, 3, 4, 4, 2, 2, 4, 2, 3, 2, 4, 3, 2, 4, 4, 3, 3, 5, 3, 6, 2, 3, 2, 5, 4, 4, 2, 6, 3, 4, 3, 5, 6, 7, 2, 6, 3, 5, 3, 4, 2, 6, 5, 4, 5, 3, 5, 5, 5, 3, 3, 5, 5, 6, 3, 4, 4, 7, 5, 3, 4, 1, 2, 5, 5, 5, 4, 5, 3, 5, 4, 6, 5, 8
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

Prime divisors are counted with multiplicity. - Harvey P. Dale, Oct 23 2020
It is an open question as to whether omega(p#+1) = bigomega(p#+1) = a(n); that is, as to whether the Euclid numbers are squarefree. Any square dividing p#+1 must exceed 2.5*10^15 (see Vardi, p. 87). - Sean A. Irvine, Oct 21 2023

Examples

			a(6)=2 because 2*3*5*7*11*13+1 = 30031 = 59 * 509.
		

References

  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991.

Crossrefs

Programs

  • Maple
    A054988 := proc(n)
        numtheory[bigomega](1+mul(ithprime(i),i=1..n)) ;
    end proc:
    seq(A054988(n),n=1..20) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]+1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]
    PrimeOmega[#+1]&/@FoldList[Times,Prime[Range[90]]] (* Harvey P. Dale, Oct 23 2020 *)
  • PARI
    a(n) = bigomega(1+prod(k=1, n, prime(k))); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = Omega(1 + Product_{k=1..n} prime(k)). - Wesley Ivan Hurt, Mar 06 2022
a(n) = A001222(A006862(n)). - Michel Marcus, Mar 07 2022
a(n) = 1 iff n is in A014545. - Bernard Schott, Mar 07 2022

Extensions

More terms from Robert G. Wilson v, Mar 24 2001
a(44)-a(81) from Charles R Greathouse IV, May 07 2011
a(82)-a(87) from Amiram Eldar, Oct 03 2019

A193330 Number of prime factors of n^2 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 3, 3, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 2, 2, 3, 3, 3, 2, 2, 1, 3, 3, 2, 1, 3, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 1, 3, 1, 5, 2, 2, 2, 2, 2, 3, 2, 2, 1, 3, 4, 2, 3, 2, 3, 4, 1, 3, 2, 3, 2, 2, 2, 3, 3, 4, 1, 2
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of terms, counted with multiplicity, in a prime factorization of n + i in the ring of Gaussian integers. - Jason Kimberley, Dec 17 2011

Crossrefs

Programs

A366713 Number of prime factors of 12^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 4, 2, 4, 5, 4, 7, 2, 3, 5, 4, 6, 9, 6, 4, 6, 6, 5, 10, 3, 3, 6, 3, 2, 9, 4, 5, 7, 4, 5, 11, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 10, 9, 5, 5, 10, 7, 9, 11, 8, 6, 10, 5, 6, 15, 5, 9, 11, 4, 5, 12, 10, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]+1]
  • PARI
    a(n)=bigomega(12^n+1)

Formula

a(n) = bigomega(12^n+1) = A001222(A178248(n)).

A086257 Number of primitive prime factors of 2^n+1.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 5, 2, 1, 4, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 4, 3, 2, 4, 1, 4, 2, 1
Offset: 0

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A prime factor of 2^n+1 is called primitive if it does not divide 2^r+1 for any rA086258 for those n that have a record number of primitive prime factors.

Examples

			a(14) = 2 because 2^14+1 = 5*29*113 and 29 and 113 do not divide 2^r+1 for r < 14.
		

Crossrefs

Excluding a(0) = 1, forms a bisection of A086251.
Cf. A046799 (number of distinct prime factors of 2^n+1), A054992 (number of prime factors, with repetition, of 2^n+1), A086258.

Programs

  • Mathematica
    nMax=200; pLst={}; Table[f=Transpose[FactorInteger[2^n+1]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 0, nMax}]

Formula

For n > 0, a(n) = A086251(2*n). - Max Alekseyev, Sep 06 2022
Previous Showing 11-20 of 28 results. Next