cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A086106 Decimal expansion of positive root of x^4 - x^3 - 1 = 0.

Original entry on oeis.org

1, 3, 8, 0, 2, 7, 7, 5, 6, 9, 0, 9, 7, 6, 1, 4, 1, 1, 5, 6, 7, 3, 3, 0, 1, 6, 9, 1, 8, 2, 2, 7, 3, 1, 8, 7, 7, 8, 1, 6, 6, 2, 6, 7, 0, 1, 5, 5, 8, 7, 6, 3, 0, 2, 5, 4, 1, 1, 7, 7, 1, 3, 3, 1, 2, 1, 1, 2, 4, 9, 5, 7, 4, 1, 1, 8, 6, 4, 1, 5, 2, 6, 1, 8, 7, 8, 6, 4, 5, 6, 8, 2, 4, 9, 0, 3, 5, 5, 0, 9, 3, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 09 2003

Keywords

Comments

Also the growth constant of the Fibonacci 3-numbers A003269 [Stakhov et al.]. - R. J. Mathar, Nov 05 2008

Examples

			1.380277569...
The four solutions are the present one, -A230151, and the two complex ones 0.2194474721... - 0.9144736629...*i and its complex conjugate. - _Wolfdieter Lang_, Aug 19 2022
		

Crossrefs

Cf. -A230151 (other real root).
Cf. A060006.

Programs

  • Mathematica
    RealDigits[Root[ -1 - #1^3 + #1^4 &, 2], 10, 110][[1]]
  • PARI
    polrootsreal( x^4-x^3-1)[2] \\ Charles R Greathouse IV, Apr 14 2014
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^4 - x^3 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b086106.txt", n, " ", d));  \\ Iain Fox, Oct 23 2017

Formula

Equals (1 + (A^2 + sqrt(A^4 - 16*u*A^2 + 2*A))/A)/4 with A = sqrt(8*u + 3/2), u = (-(Bp/2)^(1/3) + (Bm/2)^(1/3)*(1 - sqrt(3)*i)/2 - 3/8)/6, with Bp = 27 + 3*sqrt(3*283), Bm = 27 - 3*sqrt(3*283), and i = sqrt(-1). (Standard computation of a quartic.) The other (negative) real root -A230151 is obtained by using in the first formula the negative square root. The other two complex roots are obtained by replacing A by -A in these two formulas. - Wolfdieter Lang, Aug 19 2022

A306734 Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 8, 9, 8, 8, 9, 9, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 14, 15, 15, 15, 15, 15, 15, 16
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Mar 10 2020 *)

Formula

a(n) ~ c * A333198^sqrt(n) / sqrt(n), where c = 0.424889520435345887204307524... = sqrt((23 + (10051/2 - (1173*sqrt(69))/2)^(1/3) + ((23/2)*(437 + 51*sqrt(69)))^(1/3))/69)/2, c = sqrt(s)/2, where s is the real root of the equation -1 + 6*s - 23*s^2 + 23*s^3 = 0. - Vaclav Kotesovec, Mar 11 2020
Limit_{n->infinity} a(n) / A333179(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885... - Vaclav Kotesovec, Mar 11 2020

A164001 Spiral of triangles around a hexagon.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2009

Keywords

Comments

a(n) is the side length of the n-th triangle in a spiral around a hexagon with side length = 1.
Sequence very similar to A134816, but without repeated terms. Records in A134816. Also records in A000931, the Padovan sequence.
Column k=2 of A242464 (with offset 0). - Alois P. Heinz, May 19 2014
a(n) is the number of bitstrings of length n-1 without two consecutive 0's or three consecutive 1's. - Zachary Stier, Mar 16 2021

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1},{1,2,3,4},50] (* Harvey P. Dale, Jul 08 2017 *)

Formula

If n < 5 then a(n) = n, otherwise a(n) = a(n-2) + a(n-3).
G.f.: -x - 1 + (-x^2 - 2*x - 1)/(-1 + x^2 + x^3). a(n) = A000931(n+4) + A000931(n+5) = A000931(n+7), n > 1. - R. J. Mathar, Oct 29 2009
a(n) ~ 1.67873... * 1.32471...^(n-1) where 1.32471... is the real root of x^3 - x - 1 = 0 (see A060006), and 1.67873... is the real root of 23*x^3 - 46*x^2 + 13*x - 1 = 0. - Ricardo Bittencourt, May 14 2023

A293506 Decimal expansion of real root of x^5 - x^4 - x^2 - 1.

Original entry on oeis.org

1, 5, 7, 0, 1, 4, 7, 3, 1, 2, 1, 9, 6, 0, 5, 4, 3, 6, 2, 9, 1, 0, 6, 6, 5, 4, 3, 5, 1, 3, 7, 1, 2, 6, 5, 5, 3, 8, 7, 3, 1, 3, 1, 6, 0, 7, 4, 2, 4, 5, 2, 7, 4, 3, 6, 9, 3, 1, 6, 5, 4, 8, 7, 7, 8, 9, 7, 3, 3, 0, 6, 6, 1, 5, 4, 4, 1, 6, 2, 3, 2, 0, 2, 2, 2, 7, 6
Offset: 1

Views

Author

Iain Fox, Oct 10 2017

Keywords

Comments

This root is also the ninth smallest of the Pisot numbers.
The ratio of successive terms of A122115 converges to this number.

Examples

			1.570147312196054362910665...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^5 - #^4 - #^2 - 1 &, 1], 10, 87] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^4 - x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^4 - x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293506.txt", n, " ", d));

Extensions

More terms from Andrey Zabolotskiy, Oct 12 2017

A160155 Decimal expansion of the one real root of x^5-x-1.

Original entry on oeis.org

1, 1, 6, 7, 3, 0, 3, 9, 7, 8, 2, 6, 1, 4, 1, 8, 6, 8, 4, 2, 5, 6, 0, 4, 5, 8, 9, 9, 8, 5, 4, 8, 4, 2, 1, 8, 0, 7, 2, 0, 5, 6, 0, 3, 7, 1, 5, 2, 5, 4, 8, 9, 0, 3, 9, 1, 4, 0, 0, 8, 2, 4, 4, 9, 2, 7, 5, 6, 5, 1, 9, 0, 3, 4, 2, 9, 5, 2, 7, 0, 5, 3, 1, 8, 0, 6, 8, 5, 2, 0, 5, 0, 4, 9, 7, 2, 8, 6, 7, 2, 8, 9, 5, 3, 5
Offset: 1

Views

Author

Harry J. Smith, May 03 2009

Keywords

Comments

The other (complex) roots are 0.181232444469875383... + 1.08395410131771066...*i, and -0.764884433600584726... + 0.352471546031726249...*i, together with their complex conjugates. - Wolfdieter Lang, Dec 15 2022
This quintic is in some sense the smallest and/or simplest algebraic equation for which there is no explicit expression for the roots. (The "equivalent" quintic x^5 - x + 1 has the opposite real root, x = -1.1673..., while x^5 + x + 1 = (x^2 + x + 1)(x^3 - x^2 + 1).) - M. F. Hasler, Jul 12 2025

Examples

			1.16730397826141868425604589985484218072056037152548903914008244927565...
		

Crossrefs

Cf. A039922 (continued fraction), A001622 (golden ratio phi = root of x^2 - x - 1), A060006 (plastic constant, root of x^3 - x - 1), A060007 (root of x^4 - x - 1).

Programs

  • Mathematica
    RealDigits[Root[x^5-x-1, x, 1], 10, 105] // First (* Jean-François Alcover, Jul 09 2015 *)
  • PARI
    localprec(20080); r=real(polroots('x^5 - 'x - 1)[1]); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b160155.txt", n, " ", d)) \\ Edited by M. F. Hasler, Jul 12 2025
    
  • PARI
    polrootsreal(x^5-x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals (1 + (1 + (1 + (1 + (1 + ...)^(1/5))^(1/5))^(1/5))^(1/5))^(1/5). - Ilya Gutkovskiy, Dec 15 2017

A023434 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-4).

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 113, 150, 199, 264, 350, 464, 615, 815, 1080, 1431, 1896, 2512, 3328, 4409, 5841, 7738, 10251, 13580, 17990, 23832, 31571, 41823, 55404, 73395, 97228, 128800, 170624, 226029, 299425, 396654, 525455
Offset: 0

Views

Author

Keywords

Comments

Limit_{n->infinity} a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006). - Gerald McGarvey, Sep 19 2004
a(n) is the number of distinct even run-types taken over nonempty subsets of [n+1]. The run-type of a set of positive integers is the sequence of lengths when the set is decomposed into maximal runs of consecutive integers and it is even if all its entries are even. For example, the set {2,3,5,6,9,10,11} has run-type (2,2,3) and a(6)=6 counts (2),(4),(6),(2,2),(2,4),(4,2). - David Callan, Jul 14 2006
Partial sums of the sequence obtained by deleting the first 2 terms of A000931. Example: 0+1+0+1+1 = 3 = a(4). - David Callan, Jul 14 2006
One less than the sequence obtained by deleting the first 7 terms of A000931. - Ira M. Gessel, May 02 2007
This sequence counts ordered partitions of (n-1) into parts less than or equal to 3, in which the order of 1's are unimportant. Alternately, the order of 2's and 3's are important (see example). - David Neil McGrath, Apr 26 2015
Interleaving of A289692 and A077855. - Bruce J. Nicholson, Apr 09 2018

Examples

			G.f. = x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + ...
a(7)=8, with (n-1)=6. The partially ordered partitions of 6 are (33),(321,312,132=one),(231,213,123=one),(3111,1311,1131,1113=one),(222),(2211,1122,1221,2112,1212,2121=one),(21111,12111,11211,11121,11112=one),(111111). - _David Neil McGrath_, Apr 26 2015
		

Crossrefs

Programs

  • Magma
    [0,1] cat [ n le 4 select (n) else Self(n-1)+Self(n-2)-Self(n-4): n in [1..45] ]; // Vincenzo Librandi, Apr 27 2015
  • Maple
    f:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2)-a(n-4),seq(a(i)=[0,1,1,2][i+1],i=0..3)},a(n),remember):
    seq(f(i),i=0..100); # Robert Israel, May 04 2015
  • Mathematica
    a[ n_] := If[ n < 0, SeriesCoefficient[ -x^3 / (1 - x^2 - x^3 + x^4), {x, 0, -n}], SeriesCoefficient[ x / (1 - x - x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Nov 29 2013 *)
    LinearRecurrence[{1, 1, 0, -1}, {0, 1, 1, 2}, 50] (* Vincenzo Librandi, Apr 27 2015 *)
  • PARI
    {a(n) = polcoeff( if( n<0, -x^3 / (1 - x^2 - x^3 + x^4), x / (1 - x - x^2 + x^4)) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Nov 29 2013 */
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x/((1-x)*(1-x^2-x^3)))) \\ Altug Alkan, Apr 09 2018
    

Formula

a(n) = A000931(n+7)-1.
a(0)=0, a(1)=1, a(2)=1 then for n>2 a(n)=ceiling(r*a(n-1)) where r is the positive root of x^3-x-1=0. - Benoit Cloitre, Jun 19 2004
G.f.: x/((1-x)*(1-x^2-x^3)). - Jon Perry, Jul 04 2004
For n>2 a(n) = floor(sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))) + 1. - Gerald McGarvey, Sep 19 2004
a(n) = Sum_{k=1..floor((n+2)/3)} binomial(floor((n+2-k)/2),k). This formula counts even run-types by length. - David Callan, Jul 14 2006
a(n) = a(n-2) + a(n-3) + 1. - Mark Dols, Feb 01 2010
a(n) + a(n+1) = A054405(n). Partial sums is A054405. - Michael Somos, Dec 01 2013
a(-3-n) = -A077905(n) for all n in Z. - Michael Somos, Sep 25 2014

A060007 Decimal expansion of the positive real root of x^4 - x - 1.

Original entry on oeis.org

1, 2, 2, 0, 7, 4, 4, 0, 8, 4, 6, 0, 5, 7, 5, 9, 4, 7, 5, 3, 6, 1, 6, 8, 5, 3, 4, 9, 1, 0, 8, 8, 3, 1, 9, 1, 4, 4, 3, 2, 4, 8, 9, 0, 8, 6, 2, 4, 8, 6, 3, 5, 2, 1, 4, 2, 8, 8, 2, 4, 4, 4, 5, 3, 0, 4, 9, 7, 1, 0, 0, 0, 8, 5, 2, 2, 5, 9, 1, 3, 5, 0, 2, 5, 3, 0, 9, 5, 5, 2, 1, 8, 6, 9, 9, 6, 2, 8, 6, 2, 5, 7, 4, 0, 1
Offset: 1

Views

Author

Fabian Rothelius, Mar 14 2001

Keywords

Comments

Original name: Decimal expansion of v_4, where v_n is the smallest, positive, real solution to the equation (v_n)^n = v_n + 1.
v_2 = A001622 - 1. [Corrected by M. F. Hasler, Jul 12 2025]
v_3 = A060006, a.k.a. plastic constant, real root of x^3 - x - 1. - M. F. Hasler, Jul 12 2025
A Perron number of the 4th degree polynomial (see Boys and Wu). - R. J. Mathar, Mar 19 2011
This number is not ruler-and-compass constructible because x^4-x-1 and its resolvent x^3+4x+1 are irreducible over the rationals. - Jean-François Alcover, Aug 31 2015
The other (negative) real root -0.724491959... is -A356032. The first of the pair of complex conjugate roots is obtained by negating in the formula for v_4 below sqrt(2*u) and sqrt(u), giving -0.2481260628... - 1.0339820609...*i. - Wolfdieter Lang, Aug 27 2022
The sequence a(n) = v_4^((n^2-n)/2) satisfies the Somos-4 recursion a(n+2)*a(n-2) = a(n+1)*a(n-1) + a(n)^2 for all n in Z. - Michael Somos, Mar 24 2023

Examples

			v_4 = 1.220744084605759475361685349...
		

Crossrefs

Cf. A001622 (golden ratio, root of x^2 - x - 1), A060006 (plastic number, root of x^3 - x - 1), A202540 (log thereof), A160155 (root of x^5 - x - 1), A356032 (root of x^4 + x - 1), A006720, A298813.

Programs

  • Maple
    r:=(108+12*sqrt(849))^(1/3): (sqrt(12/sqrt(-8/r+r/6)+48/r-r) + sqrt(-48/r+r))/(2*sqrt(6)): evalf(%,105); # Vaclav Kotesovec, Oct 12 2013
  • Mathematica
    RealDigits[x/.FindRoot[x^4==x+1,{x,1},WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jul 11 2012 *)
    Root[ #^4 - # - 1&, 2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    default(realprecision, 110); digits(floor(solve(x=1, 2, x^4 - x - 1)*10^105)) /* Michael Somos, Mar 22 2023 */

Formula

Equals (1 + (1 + (1 + (1 + (1 + ...)^(1/4))^(1/4))^(1/4))^(1/4))^(1/4). - Ilya Gutkovskiy, Dec 15 2017
v_4 = (sqrt(2)*u + sqrt(sqrt(2*u) - 2*u^2))/(2*sqrt(u)), with u = (Ap^(1/3) + ep*Am^(1/3))/3, where Ap = (3/16)*(9 + sqrt(3*283)), Am = (3/16)*(9 - sqrt(3*283)), ep = (-1 + sqrt(3)*i)/2 and i = sqrt(-1).
For the trigonometric equivalent u = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/16)* sqrt(3))). - Wolfdieter Lang, Aug 27 2022
Equals 1 + Sum_{n >= 1} (1/4)^n*(Product_{j=1..n-1} 1 + n - 4*j)/n!. - Antonio Graciá Llorente, Dec 13 2024
Equals exp(A202540) = sqrt(A298813). - Hugo Pfoertner, Dec 14 2024

Extensions

More terms from Benoit Cloitre, Jan 11 2003
Simplified definition from M. F. Hasler, Jul 12 2025

A333179 G.f.: Sum_{k>=0} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 5, 6, 5, 6, 7, 7, 8, 8, 8, 8, 9, 8, 8, 8, 7, 8, 8, 8, 8, 9, 9, 10, 11, 11
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ c * A333198^sqrt(n) / sqrt(n), where c = 0.3207396095989103757477946185... = sqrt((1 - (2/(23*(23 + 3*sqrt(69))))^(1/3) + ((1/2)*(23 + 3*sqrt(69)))^(1/3)/23^(2/3))/3)/2, c = sqrt(s)/2, where s is the real root of the equation -1 + 8*s - 23*s^2 + 23*s^3 = 0.
Limit_{n->infinity} A306734(n) / a(n) = A060006 = (1/2 + sqrt(23/3)/6)^(1/3) + (1/2 - sqrt(23/3)/6)^(1/3) = 1.32471795724474602596090885...

A109134 Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.

Original entry on oeis.org

1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
Offset: 1

Views

Author

Lekraj Beedassy, Aug 17 2005

Keywords

Comments

The silver number (A060006) is equal to Phi*(Phi-1).
Also Phi*(Phi-1) = 1/(Phi-1). - Richard R. Forberg, Oct 08 2014
Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014
Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r + 2/3 where r is the real root of y^3 - (1/3)*y - 25/27.
The other roots of x^3 - 2*x^2 + x - 1 are (2 + w1*((25 + 3*sqrt(69))/2)^(1/3) + w2*((25 - 3*sqrt(69))/2)^(1/3))/3 = 0.1225611668... + 0.7448617668...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - cosh((1/3)*arccosh(25/2)) + sqrt(3)*sinh((1/3)*arccosh(25/2))*i)/3, and its complex conjugate. (End)

Examples

			1.75487766624669276004950889635852869189460661777279314398928397064...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.11, p. 340.
  • Martin Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.

Crossrefs

Programs

  • Mathematica
    FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *)
    Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    d=104;default(realprecision,d);print(k=solve(x=1,2,(x-1)^2-1/x)); for(c=0,d,z=floor(k);print1(z,",",);k=10*(k-z))
    
  • PARI
    polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014

Formula

Equals 1+A075778. - R. J. Mathar, Aug 20 2008
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
Equals - Sum_{k>=1} Gamma(k - k/5 - 1)*Gamma(k/5 + 1)*sin(3*k*Pi/5)/(k*Pi*Gamma(k)). - Antonio Graciá Llorente, Dec 14 2024

Extensions

Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005

A228777 Decimal expansion of the third smallest Pisot-Vijayaraghavan number.

Original entry on oeis.org

1, 4, 4, 3, 2, 6, 8, 7, 9, 1, 2, 7, 0, 3, 7, 3, 1, 0, 7, 6, 2, 8, 1, 2, 7, 6, 0, 7, 3, 8, 6, 9, 1, 1, 6, 0, 4, 6, 7, 6, 0, 1, 1, 9, 6, 6, 6, 5, 4, 5, 7, 1, 5, 9, 8, 4, 0, 9, 2, 3, 3, 7, 9, 3, 6, 2, 3, 7, 8, 4, 8, 3, 7, 8, 7, 4, 1, 8, 9, 0, 5, 0, 0, 3, 7, 5, 9, 0, 0, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 04 2013

Keywords

Examples

			1.443268791270373107628127607386...
		

Crossrefs

Programs

  • Maple
    fsolve(x^5-x^4-x^3+x^2-1,x,1.4..1.5) ;
  • Mathematica
    Root[Function[x, x^5-x^4-x^3+x^2-1], 1] // RealDigits[#, 10, 90]& // First (* Jean-François Alcover, Feb 20 2014 *)
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^4 - x^3 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b228777.txt", n, " ", d));  \\ Iain Fox, Oct 23 2017

Formula

A root of x^5-x^4-x^3+x^2-1.
Previous Showing 11-20 of 75 results. Next