cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A366669 a(n) = phi(10^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 10, 100, 720, 9792, 90900, 990000, 9090900, 94117632, 681410880, 9897840000, 86925373920, 979102080000, 9080325951840, 95255567232000, 712493107200000, 9926748531589120, 90004044661864320, 989999010000000000, 9090909090909090900, 97910150554895155200
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[10^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 10 2023 *)
  • PARI
    {a(n) = eulerphi(10^n+1)}

Formula

a(n) = A000010(A062397(n)). - Paul F. Marrero Romero, Nov 10 2023

A291639 Numbers k such that 0 is the smallest decimal digit of k^3.

Original entry on oeis.org

10, 16, 20, 22, 30, 34, 37, 40, 42, 43, 47, 48, 50, 52, 59, 60, 63, 67, 69, 70, 73, 74, 79, 80, 84, 86, 87, 89, 90, 93, 94, 99, 100, 101, 102, 103, 106, 107, 109, 110, 112, 115, 116, 117, 118, 120, 123, 124, 126, 127, 128, 130, 131, 134, 135, 138, 140, 141
Offset: 1

Views

Author

Colin Barker, Aug 28 2017

Keywords

Comments

The sequence is infinite. For example, A062397(i) is in the sequence for any i > 1, since A168575(i) contains the digit 0 for any i > 1. - Felix Fröhlich, Aug 28 2017
Also contains A008592, and has asymptotic density 1. - Robert Israel, Aug 29 2017

Examples

			16 is in the sequence because 16^3 = 4096, the smallest decimal digit of which is 0.
		

Crossrefs

Programs

  • Maple
    select(n -> min(convert(n^3,base,10))=0, [$1..1000]); # Robert Israel, Aug 29 2017
  • Mathematica
    Select[Range[150],DigitCount[#^3,10,0]>0&] (* Harvey P. Dale, Feb 03 2025 *)
  • PARI
    select(k->vecmin(digits(k^3))==0, vector(500, k, k))

A029797 Numbers k such that k^2 and k^3 have the same set of digits.

Original entry on oeis.org

0, 1, 10, 100, 146, 1000, 1203, 1460, 7652, 8077, 8751, 8965, 10000, 10406, 11914, 12030, 12057, 12586, 12768, 12961, 13055, 14202, 14600, 14625, 16221, 19350, 20450, 21539, 22040, 22175, 23682, 24071, 25089, 25201, 25708, 26653, 26981
Offset: 1

Views

Author

Keywords

Comments

Conjecture: there exists some m and N for which a(n) = m + n for all n >= N. [Charles R Greathouse IV, Jun 28 2011]
This conjecture is false. If the conjecture is true then for some N we would have k is in the sequence if k >= n. But 10^e + 1 (A062397) is not in the sequence for any integer e >= 0. - David A. Corneth, Nov 13 2023

Examples

			146 is in the sequence as 146^2 = 21316 has digits {1, 2, 3, 6} and 146^3 = 3112136 has digits {1, 2, 3, 6} as well. - _David A. Corneth_, Nov 13 2023
		

Crossrefs

Cf. A011557 (a subsequence).

Programs

A087000 Half length of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.

Original entry on oeis.org

3, 1, 3, 8, 9, 11, 14, 23, 29, 30, 4, 22, 48, 2, 17, 54, 56, 21, 65, 4, 23, 74, 39, 83, 89, 90, 96, 49, 15, 111, 114, 116, 15, 25, 128, 131, 134, 14, 73, 156, 55, 168, 58, 16, 183, 93, 189, 191, 194, 100, 102, 209, 70, 216, 16, 76, 230, 77, 243, 245, 249, 251
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2003

Keywords

Comments

a(n) appears to be the least k such that 10^k+1 is divisible by A028416(n). See A001271. - Michel Marcus, Aug 13 2023

Crossrefs

Formula

a(n) = A002371(A049084(A028416(n)))/2.
a(n) = A055642(A086999(n))/2.
a(n) = A055642(A087001(n)) = A055642(A087002(n)).

A215614 Numbers k that are not multiples of 10 and such that sum of digits of k^2 is 7.

Original entry on oeis.org

4, 5, 32, 49, 149, 1049
Offset: 1

Views

Author

Zak Seidov, Aug 17 2012

Keywords

Comments

Except for the number 1, the terms of this sequence and numbers 10^k+1 (A062397) are the only numbers (up to trailing 0's) whose square has sum of digits less than 9. - M. F. Hasler, Sep 23 2014
Is this sequence finite? See also A384095 for a similar problem with digit sum 9. - M. F. Hasler, Jun 20 2025
a(7) > 10^15 if it exists. - David A. Corneth, Jun 21 2025
a(7) > 10^65 if it exists. - Michael S. Branicky, Jun 25 2025
a(7) > 10^700 if it exists. - Max Alekseyev, Jun 27 2025

Crossrefs

Cf. A004159 (sum of digits of n^2).
Subsequence of A262711.
Cf. A384094 (similar for digit sum 9), A384095 (subset of "sporadic solutions").

Programs

  • Mathematica
    Select[Range[1500],Mod[#,10]!=0&&Total[IntegerDigits[#^2]]==7&] (* Harvey P. Dale, Aug 21 2022 *)
  • PARI
    for(n=1,9e9, n%10&&sumdigits(n^2)==7&&print1(n",")) \\ M. F. Hasler, Sep 23 2014

Extensions

Edited and unproven keywords fini,full removed by Max Alekseyev, Jun 20 2025

A001271 Irregular table read by rows: row n lists prime factors of 10^n +1, with multiplicity.

Original entry on oeis.org

2, 11, 101, 7, 11, 13, 73, 137, 11, 9091, 101, 9901, 11, 909091, 17, 5882353, 7, 11, 13, 19, 52579, 101, 3541, 27961, 11, 11, 23, 4093, 8779, 73, 137, 99990001, 11, 859, 1058313049, 29, 101, 281, 121499449, 7, 11, 13, 211, 241, 2161, 9091, 353, 449, 641, 1409, 69857
Offset: 0

Views

Author

N. J. A. Sloane, revised Jul 13 2009

Keywords

Comments

Except for 2, all these primes are in A028416, and all the primes in A028416 appear here. - Davide Rotondo, Aug 12 2023

Examples

			Table begins:
    2;
   11;
  101,
    7,      11, 13;
   73,     137;
   11,    9091;
  101,    9901;
   11,  909091;
   17, 5882353;
  ...
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Extensions

Term ordering corrected by Sean A. Irvine, Apr 11 2012
Minor edits to description by Ray Chandler, May 02 2017

A093142 Expansion of g.f. (1-5*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 6, 56, 556, 5556, 55556, 555556, 5555556, 55555556, 555555556, 5555555556, 55555555556, 555555555556, 5555555555556, 55555555555556, 555555555555556, 5555555555555556, 55555555555555556, 555555555555555556, 5555555555555555556, 55555555555555555556, 555555555555555555556
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 5*A001045(3n)/3+(-1)^n.
Partial sums of A093143.
A convex combination of 10^n and 1.
In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1, 1+k, 1+11k, 1+111k, ... This is the case for k=5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-5x)/((1-x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{11,-10},{1,6},20] (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    {a(n) = (5*10^n+4)/9} \\ Seiichi Manyama, Sep 14 2019

Formula

a(n) = 5*10^n/9 + 4/9.
a(n) = 10*a(n-1) - 4 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n) = 11*a(n-1) - 10*a(n-2), n > 1. - Harvey P. Dale, Aug 23 2014
From Elmo R. Oliveira, Apr 29 2025: (Start)
E.g.f.: exp(x)*(5*exp(9*x) + 4)/9.
a(n) = (A062397(n) + A002275(n))/2. (End)

A098406 a(n) = (10^n + 17)/9.

Original entry on oeis.org

2, 3, 13, 113, 1113, 11113, 111113, 1111113, 11111113, 111111113, 1111111113, 11111111113, 111111111113, 1111111111113, 11111111111113, 111111111111113, 1111111111111113, 11111111111111113, 111111111111111113, 1111111111111111113, 11111111111111111113, 111111111111111111113
Offset: 0

Views

Author

Klaus Brockhaus, Sep 07 2004

Keywords

Comments

A097683 gives numbers k such that a(k) is prime.

Examples

			a(5) = (100000 + 17)/9 = 11113.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Table[PadLeft[{3},n,1],{n,20}] (* Harvey P. Dale, Jun 18 2011 *)
  • PARI
    for(n=1,18,print1(((10^n)+17)/9,","))

Formula

a(1) = 3; a(n) = a(n-1) + 10^(n-1).
a(1) = 3; a(n) = 10*a(n-1) - 17.
a(n) = A047855(n)+1 = A002275(n)+2.
G.f.: (2-19*x)/((10*x-1)*(x-1)). - R. J. Mathar, Jan 27 2017
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 17)/9.
a(n) = A062397(n) - A002282(n).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

Extensions

a(0) from Ivan Panchenko, Nov 02 2013

A098609 a(n) = 100^n - 1.

Original entry on oeis.org

0, 99, 9999, 999999, 99999999, 9999999999, 999999999999, 99999999999999, 9999999999999999, 999999999999999999, 99999999999999999999, 9999999999999999999999, 999999999999999999999999, 99999999999999999999999999, 9999999999999999999999999999, 999999999999999999999999999999
Offset: 0

Views

Author

Henry Bottomley, Sep 17 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 100*a(n-1) + 99 = A002283(2*n) = A098608(n) - 1.
From Chai Wah Wu, Sep 22 2016: (Start)
a(n) = 101*a(n-1) - 100*a(n-2) for n > 1.
G.f.: 99*x/((x - 1)*(100*x - 1)). (End)
E.g.f.: exp(x)*(exp(99*x) - 1). - Stefano Spezia, Aug 05 2024
a(n) = A002283(n)*A062397(n). - Elmo R. Oliveira, Sep 09 2024

A093135 Expansion of g.f. (1-8*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 3, 23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223, 2222222222222222223, 22222222222222222223, 222222222222222222223
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 2*A001045(3*n)/3 + (-1)^n.
Partial sums of A093136.
A convex combination of 10^n and 1.
In general the second binomial transform of k*Jacobsthal(3*n)/3 + (-1)^n is 1, 1+k, 1+11*k, 1+111*k, ... This is the case for k=2.
Essentially the same as A091628 (cf. 2nd formula). - Georg Fischer, Oct 06 2018
a(n) is 3^n represented in bijective base-3 numeration. - Alois P. Heinz, Aug 26 2019

Crossrefs

Formula

a(n) = (2*10^n + 7)/9.
a(n) = 10*a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 02 2010
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(7 + 2*exp(9*x))/9.
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = (A062397(n) - A002279(n))/2. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025
Previous Showing 21-30 of 43 results. Next