cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A161908 Array read by rows in which row n lists the divisors of n that are >= sqrt(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 3, 6, 7, 4, 8, 3, 9, 5, 10, 11, 4, 6, 12, 13, 7, 14, 5, 15, 4, 8, 16, 17, 6, 9, 18, 19, 5, 10, 20, 7, 21, 11, 22, 23, 6, 8, 12, 24, 5, 25, 13, 26, 9, 27, 7, 14, 28, 29, 6, 10, 15, 30, 31, 8, 16, 32, 11, 33, 17, 34, 7, 35, 6, 9, 12, 18, 36, 37, 19, 38, 13, 39, 8, 10, 20, 40, 41, 7, 14, 21, 42, 43, 11, 22, 44, 9, 15, 45, 23, 46, 47, 8, 12, 16
Offset: 1

Views

Author

Omar E. Pol, Jun 27 2009

Keywords

Comments

T(n,A038548(n)) = n. - Reinhard Zumkeller, Mar 08 2013
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by this sequence. - Gus Wiseman, Mar 08 2021

Examples

			Array begins:
1;
2;
3;
2,4;
5;
3,6;
7;
4,8;
3,9;
5,10;
11;
4,6,12;
13;
7,14;
5,15;
4,8,16;
		

Crossrefs

Final terms are A000027.
Initial terms are A033677.
Row lengths are A038548 (number of superior divisors).
Row sums are A070038 (sum of superior divisors).
The inferior version is A161906.
The prime terms are counted by A341591.
The squarefree terms are counted by A341592.
The prime-power terms are counted by A341593.
The strictly superior version is A341673.
The strictly inferior version is A341674.
The odd terms are counted by A341675.
A001221 counts prime divisors, with sum A001414.
A056924 counts strictly superior (or strictly inferior divisors).
A207375 lists central divisors.
- Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341677.

Programs

  • Haskell
    a161908 n k = a161908_tabf !! (n-1) !! (k-1)
    a161908_row n = a161908_tabf !! (n-1)
    a161908_tabf = zipWith
                   (\x ds -> reverse $ map (div x) ds) [1..] a161906_tabf
    -- Reinhard Zumkeller, Mar 08 2013
  • Mathematica
    Table[Select[Divisors[n],#>=Sqrt[n]&],{n,100}]//Flatten (* Harvey P. Dale, Jan 01 2021 *)

Extensions

More terms from Sean A. Irvine, Nov 29 2010

A063962 Number of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 04 2001

Keywords

Comments

For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.
a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021

Examples

			a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33.
From _Gus Wiseman_, Feb 25 2021: (Start)
The a(n) inferior prime divisors (columns) for selected n:
n =  3  8  24  3660  390  3570 87780
   ---------------------------------
    {}  2   2     2    2     2     2
            3     3    3     3     3
                  5    5     5     5
                      13     7     7
                            17    11
                                  19
(End)
		

Crossrefs

Zeros are at indices A008578.
The divisors are listed by A161906 and add up to A097974.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A063538/A063539 have/lack a superior prime divisor.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
- Strictly Inferior: A056924, A060775, A070039, A333805, A341596, A341674.
- Strictly Superior: A056924, A140271, A238535, A341594, A341595, A341673.

Programs

  • Haskell
    a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n]
    -- Reinhard Zumkeller, Apr 05 2012
  • Maple
    with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # Emeric Deutsch
  • Mathematica
    Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale, Mar 26 2015 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
    

Formula

G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021

Extensions

Revised definition from Emeric Deutsch, Jan 31 2006

A063538 Numbers n that are not sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) >= sqrt(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence lists all numbers with a superior prime divisor, which is unique (A341676) when it exists. For example, 42 is in the sequence because it has a prime divisor 7 which is greater than the quotient 42/7 = 6. - Gus Wiseman, Feb 19 2021

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms; see pp. 95-98.

Crossrefs

Complement of A063539. Supersequence of A001358 (semiprimes).
The strictly superior version is A064052 (complement: A048098), with associated unique prime divisor A341643.
The case of odd instead of prime divisors is A116883 (complement: A116882).
Also nonzeros of A341591 (number of superior prime divisors).
The unique superior prime divisors of the terms are A341676.
A001221 counts prime divisors, with sum A001414.
A033677 selects the smallest superior divisor.
A038548 counts superior (also inferior) divisors.
A161908 lists superior divisors.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [2,seq(2*i+1, i=1..floor((N-1)/2))]):
    S:= {seq(seq(m*p, m = 1 .. min(p, N/p)),p=Primes)}:
    sort(convert(S,list)); # Robert Israel, Sep 01 2015
  • Mathematica
    Select[Range[2, 91], FactorInteger[#][[-1, 1]] >= Sqrt[#] &] (* Ivan Neretin, Aug 30 2015 *)
  • Python
    from math import isqrt
    from sympy import primepi
    def A063538(n):
        def f(x): return int(n+x-primepi(x//(y:=isqrt(x)))-sum(primepi(x//i)-primepi(i) for i in range(1,y)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 05 2024

Formula

Union of A001248 and A064052. - Gus Wiseman, Feb 24 2021

A140271 Least divisor of n that is > sqrt(n), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 8, 17, 6, 19, 5, 7, 11, 23, 6, 25, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 49, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 16, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10, 27
Offset: 1

Views

Author

Leroy Quet, May 16 2008

Keywords

Comments

If n is not a square, then a(n) = A033677(n).
If we define a divisor d|n to be strictly superior if d > n/d, then strictly superior divisors are counted by A056924 and listed by A341673. This sequence selects the smallest strictly superior divisor of n. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
a(n) is the smallest element in the following sets of strictly superior divisors:
   1: {1}       16: {8,16}        31: {31}
   2: {2}       17: {17}          32: {8,16,32}
   3: {3}       18: {6,9,18}      33: {11,33}
   4: {4}       19: {19}          34: {17,34}
   5: {5}       20: {5,10,20}     35: {7,35}
   6: {3,6}     21: {7,21}        36: {9,12,18,36}
   7: {7}       22: {11,22}       37: {37}
   8: {4,8}     23: {23}          38: {19,38}
   9: {9}       24: {6,8,12,24}   39: {13,39}
  10: {5,10}    25: {25}          40: {8,10,20,40}
  11: {11}      26: {13,26}       41: {41}
  12: {4,6,12}  27: {9,27}        42: {7,14,21,42}
  13: {13}      28: {7,14,28}     43: {43}
  14: {7,14}    29: {29}          44: {11,22,44}
  15: {5,15}    30: {6,10,15,30}  45: {9,15,45}
(End)
		

Crossrefs

These divisors are counted by A056924.
These divisors add up to A238535.
These divisors that are odd are counted by A341594.
These divisors that are squarefree are counted by A341595
These divisors that are prime are counted by A341642.
These divisors are listed by A341673.
A038548 counts superior (or inferior) divisors.
A161906 lists inferior divisors.
A161908 lists superior divisors.
A207375 list central divisors.
A341674 lists strictly inferior divisors.
- Strictly Inferior: A070039, A333805, A333806, A341596, A341677.
- Strictly Superior: A048098, A064052, A341643, A341644, A341646.

Programs

  • Maple
    with(numtheory):
    a:= n-> min(select(d-> is(d=n or d>sqrt(n)), divisors(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018
  • Mathematica
    Table[Select[Divisors[n], # > Sqrt[n] &][[1]], {n, 2, 70}] (* Stefan Steinerberger, May 18 2008 *)
  • PARI
    A140271(n)={local(d,a);d=divisors(n);a=n;for(i=1,length(d),if(d[i]>sqrt(n),a=min (d[i],a)));a} \\ Michael B. Porter, Apr 06 2010

Extensions

More terms from Stefan Steinerberger, May 18 2008
a(70)-a(80) from Ray Chandler, Jun 25 2009
Franklin T. Adams-Watters, Jan 26 2018, added a(1) = 1 to preserve the relation a(n) | n.

A238535 Sum of divisors d of n where d > sqrt(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 9, 7, 12, 9, 15, 11, 22, 13, 21, 20, 24, 17, 33, 19, 35, 28, 33, 23, 50, 25, 39, 36, 49, 29, 61, 31, 56, 44, 51, 42, 75, 37, 57, 52, 78, 41, 84, 43, 77, 69, 69, 47, 108, 49, 85, 68, 91, 53, 108, 66, 106, 76, 87, 59, 147, 61, 93, 93, 112, 78, 132
Offset: 1

Views

Author

Michel Lagneau, Feb 28 2014

Keywords

Comments

Properties of the sequence:
a(n) = n if n is prime because sigma(n) = n+1 and A066839(n) = 1;
a(p^2) = p^2 if p is prime because sigma(p^2) = p^2+p+1 and A066839(p^2)= p+1 => A000203(p^2) - A066839(p^2)= p^2;
a(m) = 2*m if m = A182147(n) = 42, 54, 66, 78, 102, 114,... (numbers n equal to the sum of its proper divisors greater than square root of n).

Examples

			a(8) = 12 because A000203(8)= 15 and A066839(8) = 3 => 15 - 8 = 12.
		

Crossrefs

Programs

  • Mathematica
    lst={}; f[n_]:=DivisorSigma[1,n]-Plus@@Select[Divisors@n,#<=Sqrt@n&];Do[If[IntegerQ[f[n]],AppendTo[lst, f[n]]],{n,1,200}];lst
  • PARI
    a(n) = sumdiv(n, d, d*(d>sqrt(n))); \\ Michel Marcus, Feb 28 2014
    
  • Sage
    def a(n):
        return sum([d for d in Integer(n).divisors() if d>sqrt(n)]) # Ralf Stephan, Mar 08 2014

Formula

a(n) = A000203(n) - A066839(n).

Extensions

Better name from Ralf Stephan, Mar 08 2014

A341674 Irregular triangle read by rows giving the strictly inferior divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 4, 1, 3, 1, 2, 1, 5, 1, 2, 3, 4, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 1, 2, 3, 6, 1, 1, 2, 4, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2021

Keywords

Comments

We define a divisor d|n to be strictly inferior if d < n/d. The number of strictly inferior divisors of n is A056924(n).

Examples

			Triangle begins:
     1: {}        16: 1,2        31: 1
     2: 1         17: 1          32: 1,2,4
     3: 1         18: 1,2,3      33: 1,3
     4: 1         19: 1          34: 1,2
     5: 1         20: 1,2,4      35: 1,5
     6: 1,2       21: 1,3        36: 1,2,3,4
     7: 1         22: 1,2        37: 1
     8: 1,2       23: 1          38: 1,2
     9: 1         24: 1,2,3,4    39: 1,3
    10: 1,2       25: 1          40: 1,2,4,5
    11: 1         26: 1,2        41: 1
    12: 1,2,3     27: 1,3        42: 1,2,3,6
    13: 1         28: 1,2,4      43: 1
    14: 1,2       29: 1          44: 1,2,4
    15: 1,3       30: 1,2,3,5    45: 1,3,5
		

Crossrefs

Initial terms are A000012.
Row lengths are A056924 (number of strictly inferior divisors).
Final terms are A060775.
Row sums are A070039 (sum of strictly inferior divisors).
The weakly inferior version is A161906.
The weakly superior version is A161908.
The odd terms are counted by A333805.
The prime terms are counted by A333806.
The squarefree terms are counted by A341596.
The strictly superior version is A341673.
The prime-power terms are counted by A341677.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A207375 lists central divisors.

Programs

  • Mathematica
    Table[Select[Divisors[n],#
    				

A037213 Expansion of Sum_{n>=0} n*q^(n^2).

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Multiplicative with a(p^(2e)) = p^e, a(p^(2e+1)) = 0. - Mitch Harris, Jun 09 2005
a(n) is the square root of n if n is square, zero otherwise. - Carl R. White, May 23 2009
Möbius transform of A069290(n). - Wesley Ivan Hurt, Jul 09 2025

Crossrefs

Programs

  • Haskell
    a037213 n = if n == r ^ 2 then r else 0  where r = a000196 n
    a037213_list = zipWith (*) a010052_list a000196_list
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Mathematica
    Table[If[IntegerQ[n^(1/2)], n^(1/2), 0], {n, 0, 100}] (* Geoffrey Critzer, Feb 21 2015 *)
  • PARI
    a(n) = if (issquare(n), sqrtint(n), 0); \\ Michel Marcus, Aug 21 2025

Formula

Dirichlet generating function: zeta(2*s-1). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = sqrt(n) * floor( cos^2(Pi * sqrt(n)) ). - Carl R. White, May 23 2009
a(n) = A000196(n) * A010052(n). - Reinhard Zumkeller, Jan 27 2010
Sum_{k=1..n} a(k) ~ n/2. - Vaclav Kotesovec, Aug 19 2021
a(n) = A066839(n) - A070039(n). - Ridouane Oudra, Jun 24 2025
a(n) = Sum_{d|n} A069290(d) * mu(n/d). - Wesley Ivan Hurt, Jul 09 2025

A217581 Largest prime divisor of n <= sqrt(n), 1 if n is prime or 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 5, 2, 3, 2, 1, 5, 1, 2, 3, 2, 5, 3, 1, 2, 3, 5, 1, 3, 1, 2, 5, 2, 1, 3, 7, 5, 3, 2, 1, 3, 5, 7, 3, 2, 1, 5, 1, 2, 7, 2, 5, 3, 1, 2, 3, 7, 1, 3, 1, 2, 5, 2, 7, 3, 1, 5, 3, 2, 1, 7, 5, 2, 3
Offset: 1

Views

Author

Peter Luschny, Mar 21 2013

Keywords

Comments

If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence selects the greatest inferior prime divisor of n. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
The sequence selects the greatest element (or 1 if empty) of each of the following sets of strictly superior divisors:
   1:{}     16:{2}      31:{}     46:{2}
   2:{}     17:{}       32:{2}    47:{}
   3:{}     18:{2,3}    33:{3}    48:{2,3}
   4:{2}    19:{}       34:{2}    49:{7}
   5:{}     20:{2}      35:{5}    50:{2,5}
   6:{2}    21:{3}      36:{2,3}  51:{3}
   7:{}     22:{2}      37:{}     52:{2}
   8:{2}    23:{}       38:{2}    53:{}
   9:{3}    24:{2,3}    39:{3}    54:{2,3}
  10:{2}    25:{5}      40:{2,5}  55:{5}
  11:{}     26:{2}      41:{}     56:{2,7}
  12:{2,3}  27:{3}      42:{2,3}  57:{3}
  13:{}     28:{2}      43:{}     58:{2}
  14:{2}    29:{}       44:{2}    59:{}
  15:{3}    30:{2,3,5}  45:{3,5}  60:{2,3,5}
(End)
		

Crossrefs

Cf. A033676.
Positions of first appearances are 1 and A001248.
These divisors are counted by A063962.
These divisors add up to A097974.
The smallest prime factor of the same type is A107286.
A strictly superior version is A341643.
A superior version is A341676.
A038548 counts superior (or inferior) divisors.
A048098 lists numbers without a strictly superior prime divisor.
A056924 counts strictly superior (or strictly inferior) divisors.
A063538/A063539 have/lack a superior prime divisor.
A140271 selects the smallest strictly superior divisor.
A161906 lists inferior divisors.
A207375 lists central divisors.
A341591 counts superior prime divisors.
A341642 counts strictly superior prime divisors.
A341673 lists strictly superior divisors.
- Inferior: A066839, A069288, A333749, A333750.
- Strictly Inferior: A060775, A333805, A333806, A341596, A341674.
- Strictly Superior: A238535, A341594, A341595, A341644, A341645, A341646.

Programs

  • Maple
    A217581 := n -> `if`(isprime(n) or n=1, 1, max(op(select(i->i^2<=n, numtheory[factorset](n)))));
  • Mathematica
    Table[If[n == 1 || PrimeQ[n], 1, Select[Transpose[FactorInteger[n]][[1]], # <= Sqrt[n] &][[-1]]], {n, 100}] (* T. D. Noe, Mar 25 2013 *)
  • PARI
    a(n) = {my(m=1); foreach(factor(n)[,1], d, if(d^2 <= n, m=max(m,d))); m} \\ Andrew Howroyd, Oct 11 2023

A341673 Irregular triangle read by rows giving the strictly superior divisors of n.

Original entry on oeis.org

2, 3, 4, 5, 3, 6, 7, 4, 8, 9, 5, 10, 11, 4, 6, 12, 13, 7, 14, 5, 15, 8, 16, 17, 6, 9, 18, 19, 5, 10, 20, 7, 21, 11, 22, 23, 6, 8, 12, 24, 25, 13, 26, 9, 27, 7, 14, 28, 29, 6, 10, 15, 30, 31, 8, 16, 32, 11, 33, 17, 34, 7, 35, 9, 12, 18, 36, 37, 19, 38, 13, 39
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2021

Keywords

Comments

We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924.

Examples

			Row n = 18 lists the strictly superior divisors of 18, which are 6, 9, 18.
Triangle begins:
   1: {}
   2: 2
   3: 3
   4: 4
   5: 5
   6: 3,6
   7: 7
   8: 4,8
   9: 9
  10: 5,10
  11: 11
  12: 4,6,12
  13: 13
  14: 7,14
  15: 5,15
  16: 8,16
  17: 17
  18: 6,9,18
  19: 19
  20: 5,10,20
		

Crossrefs

Final terms in each row (except n = 1) are A000027.
Row lengths are A056924 (number of strictly superior divisors).
Initial terms in each row are A140271.
The weakly inferior version is A161906.
The weakly superior version is A161908.
Row sums are A238535.
The odd terms in each row are counted by A341594.
The squarefree terms in each row are counted by A341595.
The prime terms in each row are counted by A341642.
The strictly inferior version is A341674.
A001221 counts prime divisors, with sum A001414.
A038548 counts superior (or inferior) divisors.
A207375 list central divisors.
- Strictly Inferior: A060775, A070039, A333805, A333806, A341596, A341677.
- Strictly Superior: A048098, A064052, A341643, A341644, A341646.

Programs

  • Mathematica
    Table[Select[Divisors[n],#>n/#&],{n,100}]

A333749 Number of squarefree divisors of n that are <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 4, 1, 2, 3, 2, 1, 4, 2, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 3, 2, 2, 4, 1, 3, 2, 2, 1, 5, 2, 2, 2, 2, 1, 5, 2, 2, 2, 2, 2, 4, 1, 3, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 03 2020

Keywords

Comments

If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior squarefree divisors. - Gus Wiseman, Feb 27 2021

Examples

			   n   inferior squarefree divisors of n
  ---  ---------------------------------
   33  1,  3
   56  1,  2,  7
  429  1,  3, 11, 13
   90  1,  2,  3,  5,  6
  490  1,  2,  5,  7, 10, 14
  480  1,  2,  3,  5,  6, 10, 15
		

Crossrefs

Positions of 1's are A008578.
The case of equality is the indicator function of A062503.
The version for prime instead of squarefree divisors is A063962.
The version for odd instead of squarefree divisors is A069288.
The version for prime-power instead of squarefree divisors is A333750.
The superior version is A341592.
The strictly superior version is A341595.
The strictly inferior version is A341596.
A005117 lists squarefree numbers.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A161906 lists inferior divisors.
A161908 lists superior divisors.
A207375 list central divisors.
- Inferior: A033676, A066839, A217581.
- Strictly Inferior: A060775, A070039, A333805, A333806, A341674, A341677.

Programs

  • Maple
    N:= 200: # for a(1)..a(N)
    g:= add(x^(k^2)/(1-x^k), k = select(numtheory:-issqrfree,[$1..floor(sqrt(N))])):
    S:= series(g,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Apr 05 2020
  • Mathematica
    Table[DivisorSum[n, 1 &, # <= Sqrt[n] && SquareFreeQ[#] &], {n, 1, 100}]
    nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, (d^2<=n) && issquarefree(d)); \\ Michel Marcus, Apr 03 2020

Formula

G.f.: Sum_{k>=1} mu(k)^2 * x^(k^2) / (1 - x^k).
Previous Showing 11-20 of 73 results. Next