cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A081257 a(n) is the greatest prime factor of (n^3 - 1).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 2

Views

Author

Jan Fricke, Mar 14 2003

Keywords

Comments

The record values here (as well as those for A081256) appear to match the terms of A002383 for n > 1. - Bill McEachen, Jun 19 2023

Examples

			a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
		

Crossrefs

Cf. A096175 (n^3-1 is an odd semiprime), A096176 ((n^3-1)/(n-1) is prime).

Programs

Formula

a(n) = A006530(A068601(n)). - Michel Marcus, Jun 19 2023

Extensions

More terms from Hugo Pfoertner, Jun 21 2004

A258807 a(n) = n^5 - 1.

Original entry on oeis.org

0, 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, 99999, 161050, 248831, 371292, 537823, 759374, 1048575, 1419856, 1889567, 2476098, 3199999, 4084100, 5153631, 6436342, 7962623, 9765624, 11881375, 14348906, 17210367, 20511148, 24299999, 28629150, 33554431
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A181124.
Sequences of the type n^k-1: A132411 (k=2), A068601 (k=3), A123865 (k=4), this sequence (k=5), A123866 (k=6), A258808 (k=7), A258809 (k=8), A258810 (k=9), A123867 (k=10), A258812 (k=11), A123868 (k=12).

Programs

  • GAP
    List([1..35],n->n^5-1); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [n^5-1: n in [1..50]];
    
  • Magma
    I:=[0,31,242,1023, 3124,7775]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+ 6*Self(n-5)-Self(n-6): n in [1..50]];
    
  • Maple
    seq(n^5-1,n=1..35); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[n^5 - 1, {n, 1, 50}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 31, 242, 1023, 3124, 7775}, 50]
  • PARI
    a(n)=n^5-1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Python
    for n in range(1, 50): print(n**5 - 1, end=', ') # Stefano Spezia, Oct 28 2018
  • Sage
    [n^5-1 for n in (1..50)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: x^2*(31 + 56*x + 36*x^2 - 4*x^3 + x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = -A024003(n). - Bruno Berselli, Jun 11 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(5*n) - 1) = 0.0379539032... - Amiram Eldar, Nov 06 2020

A100119 a(n) = n-th centered n-gonal number.

Original entry on oeis.org

1, 2, 7, 19, 41, 76, 127, 197, 289, 406, 551, 727, 937, 1184, 1471, 1801, 2177, 2602, 3079, 3611, 4201, 4852, 5567, 6349, 7201, 8126, 9127, 10207, 11369, 12616, 13951, 15377, 16897, 18514, 20231, 22051, 23977, 26012, 28159, 30421, 32801, 35302
Offset: 0

Views

Author

Jonathan Vos Post, Dec 26 2004

Keywords

Comments

a(n) is n times the n-th triangular number plus 1. - Thomas M. Green, Nov 16 2009
From Gary W. Adamson, Jul 31 2010: (Start)
Equals (1, 2, 3, 4, ...) convolved with (1, 0, 4, 7, 10, 13, ...).
Example: a(5) = 76 = (6, 5, 4, 3, 2, 1) dot (1, 0, 4, 7, 10, 13) = (6 + 0 + 16 + 21 + 20 + 13). (End)

Examples

			a(2) = 2*3 + 1 = 7, a(3) = 3*6 + 1 = 19, a(4) = 4*10 + 1 = 41. - _Thomas M. Green_, Nov 16 2009
		

Crossrefs

See also A101357 (Cumulative sums of the n-th n-gonal numbers).
A diagonal of A101321.

Programs

Formula

a(n) = 1 + n*(n + n^2)/2 = 1 + (1/2)*n^2 + (1/2) * n^3 = 1 + mean(n^2, n^3). - Joshua Zucker, May 03 2006
Equals A002411(n) + 1. - Olivier Gérard, Jun 20 2007
G.f.: (1 - 2*x + 5*x^2 - x^3) / (x-1)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 25 2012
a(n) = (A098547(n)+1)/2. - Richard Turk, Jul 18 2017
a(n) = A060354(n+2) - A000290(n+1) = A006003(n+1) - A005563(n) and for n>0 A005920(n) - A068601(n+1). - Bruce J. Nicholson, Jun 23 2018

Extensions

Corrected and extended by Joshua Zucker, May 03 2006

A158621 Partial products of A001093.

Original entry on oeis.org

9, 252, 16380, 2063880, 447861960, 154064514240, 79035095805120, 57695619937737600, 57753315557675337600, 76927416322823549683200, 133007502822161917402252800, 292350491203111894450151654400
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = PRODUCT[k=2..n](k^3-1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n).

Examples

			a(2) = 2^3+1 = 9. a(3) = (2^3+1)*(3^3+1) = 9 * 28 = 252. a(4) = (2^3+1)*(3^3+1)*(4^3+1) = 9 * 28 * 65 = 16380.
		

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^3+1),{k,2,n}],{n,2,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
    FoldList[Times,Range[2,20]^3+1] (* Harvey P. Dale, Oct 15 2017 *)

Formula

PRODUCT[k=2..n](k^3+1) = PRODUCT[k=2..n]A001093(k).
a(n) ~ sqrt(2*Pi) * cosh(sqrt(3)*Pi/2) * n^(3*n+3/2) / exp(3*n). - Vaclav Kotesovec, Jul 11 2015

A185065 a(n) = n*(n^3 + 2).

Original entry on oeis.org

0, 3, 20, 87, 264, 635, 1308, 2415, 4112, 6579, 10020, 14663, 20760, 28587, 38444, 50655, 65568, 83555, 105012, 130359, 160040, 194523, 234300, 279887, 331824, 390675, 457028, 531495, 614712, 707339, 810060, 923583, 1048640
Offset: 0

Views

Author

Vincenzo Librandi, Mar 31 2011

Keywords

Comments

Numbers a(n) such that a(n)^3 = x^3*(x-2). The values of x are in A084380.
A058895(n)^3 + A068601(n)^3 + A033562(n)^3 = a(n)^3, for n > 0. - Vincenzo Librandi, Mar 13 2012

Examples

			20^3 = 10^3*(10-2); 87^3 = 29^3*(29-2).
		

Crossrefs

Programs

Formula

G.f.: x*(3 + 5*x + 17*x^2 - x^3)/(1-x)^5. - Bruno Berselli, Mar 31 2011

A349508 a(n) is the numerator of binomial(n^3 + 6*n^2 - 6*n + 2, n^3 - 1)/n^3.

Original entry on oeis.org

1, 21318, 111399602430962720, 219754881677312748254868619396977023490, 91574665590547903212939476569574243557076290573519342040406738188187312
Offset: 1

Views

Author

Stefano Spezia, Nov 20 2021

Keywords

Comments

a(n) is the numerator of an upper bound of the number of vertices of the polytope of the n X n X n stochastic tensors, or equivalently, of the number of Latin squares of order n, or equivalently, of the number of n X n X n line-stochastic (0,1)-tensors (see Chang et al. and Zhang et al.).

Crossrefs

Cf. A349506, A349507, A349509 (denominators), A349510, A349511, A349512.

Programs

  • Mathematica
    a[n_]:=Numerator[Binomial[n^3+6n^2-6n+2,n^3-1]/n^3]; Array[a,6]

Formula

a(n)/A349509(n) <= A349510(n) < A349511(n) < A349512(n) (see Corollary 7 in Zhang et al., 2021).
a(n)/A349509(n) ~ 2^(-4 + 6*n - 6*n^2)*3^(-7/2 + 6*n - 6*n^2)*e^(-75 + 233/n + 18*n + 6*n^2)*n^(-1 - 6*n + 6*n^2)/sqrt(Pi).

A129294 Number of divisors of n^3 - 1 that are not greater than n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 7, 2, 4, 7, 5, 3, 6, 2, 6, 6, 6, 2, 13, 4, 4, 4, 8, 4, 10, 3, 6, 5, 6, 5, 14, 2, 6, 5, 8, 3, 10, 3, 8, 10, 5, 3, 16, 3, 9, 5, 9, 2, 11, 5, 8, 7, 4, 3, 20, 2, 5, 9, 11, 4, 18, 4, 6, 5, 8, 3, 14, 5, 4, 8, 6, 4, 17, 2, 21, 5, 6, 3, 16, 6, 10, 8, 8, 2, 14, 5, 9, 7, 6, 5, 16
Offset: 2

Views

Author

Reinhard Zumkeller, Apr 09 2007

Keywords

Comments

a(n) = #{d: d<=n and A068601(n) mod d = 0};
a(n)>1 for n>2, see A129295 for m such that a(m)=2: a(A129295(n))=2.

Examples

			a(100) = #{1,3,7,9,11,13,21,27,33,37,39,63,77,91,99} = 15.
		

Crossrefs

Programs

Extensions

a(1)=1 removed by Michel Marcus, Aug 01 2018

A257238 Triangle T(n, k) = n^3 - k^3, 0 <= k < = n.

Original entry on oeis.org

0, 1, 0, 8, 7, 0, 27, 26, 19, 0, 64, 63, 56, 37, 0, 125, 124, 117, 98, 61, 0, 216, 215, 208, 189, 152, 91, 0, 343, 342, 335, 316, 279, 218, 127, 0, 512, 511, 504, 485, 448, 387, 296, 169, 0, 729, 728, 721, 702, 665, 604, 513, 386, 217, 0, 1000, 999, 992, 973, 936, 875, 784, 657, 488, 271, 0
Offset: 0

Views

Author

Wolfdieter Lang, May 12 2015

Keywords

Comments

See the comments in A025581 and A079904 on a problem by François Viète (Vieta)(1593). Regarding that problem, note the simple identity: n^3 - k^3 = (n - k)^3 + 3*n*k*(n - k), for n > = k >= 0.
Row sums give A126274(n-1) for n >= 1, and 0 for n=0.
Alternating row sums are ars(2*n) = ars(2*n-1) = (4*n-3)*n^2 = A103532(n-1), for n >= 1, and ars(0) = 0.

Examples

			The triangle T(n, k) begins:
  n\k    0   1   2   3   4   5   6   7   8   9  10
   0:    0
   1:    1   0
   2:    8   7   0
   3:   27  26  19   0
   4:   64  63  56  37   0
   5:  125 124 117  98  61   0
   6:  216 215 208 189 152  91   0
   7:  343 342 335 316 279 218 127   0
   8:  512 511 504 485 448 387 296 169   0
   9:  729 728 721 702 665 604 513 386 217   0
  10: 1000 999 992 973 936 875 784 657 488 271   0
  ...
		

Crossrefs

Programs

  • Maple
    for n from 0 to 10 do seq(n^3-k^3,k=0..n) od; # Robert Israel, May 10 2018
  • Mathematica
    Table[n^3-k^3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 02 2021 *)

Formula

T(n, k) = A025581(n, k)*(A025581(n, k)^2 + 3* A079904(n, k)) (see the identity mentioned in a comment).
Columns (with one leading zero and offset 0): k=0: l^3 = A000578(l), k=1: (l+1)^3 - 1 = A068601(l+1), k=2: l*(l^2 + 6*l + 12), k=3: l*(l^2 + 9*l + 27), k=4: l*(l^2 + 12*l + 48), k=5: l*(l^2 + 15*l + 75), ...
G.f. for T(n,k): (1+4*x+4*x*y+x^2-14*x^2*y+x^2*y^2-2*x^3*y-2*x^3*y^2+7*x^4*y^2)*x/((1-x*y)^3*(1-x)^4). - Robert Israel, May 10 2018

A319213 a(n) = phi(n^3 - 1)/3 where phi is A000010.

Original entry on oeis.org

2, 4, 12, 20, 56, 36, 144, 96, 216, 144, 520, 240, 840, 480, 576, 816, 1568, 756, 2520, 1232, 1872, 1560, 4400, 1440, 4320, 3024, 4860, 3168, 7056, 2640, 9000, 5984, 7920, 6144, 10080, 4752, 17784, 7992, 13104, 9184, 22080, 7560, 23688, 12960, 14688, 15840, 33120
Offset: 2

Views

Author

Seiichi Manyama, Sep 13 2018

Keywords

Crossrefs

Row 3 of A369291.
Cf. A000010, A068601 (n^3-1).
phi(n^b - 1)/b: A319210 (b=2), this sequence (b=3), A319214 (b=5).

Programs

  • Mathematica
    EulerPhi[Range[2, 50]^3 - 1]/3 (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(n^3-1)/3}

Formula

Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (2/27) * Product_{p prime == 1 (mod 3)} (1 - 3/p^2) * Product_{p prime == 2 (mod 3)} (1 - 1/p^2) = 0.047313356295... . - Amiram Eldar, Dec 09 2024

A158622 Numerator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919, 2863
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...
Is this the same as A046163? - R. J. Mathar, Mar 27 2009
Apparently a(n) = A130770(n) for 2 <= n <= 53. - Georg Fischer, Oct 24 2018

Examples

			a(2) = 7 = numerator of (2^3-1)/2^3+1 = 7/9.
a(3) = 13 = numerator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18.
a(4) = 7 = = numerator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10.
a(5) = 31 = numerator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

  • Maple
    A158622 := proc(n) 2*(n^2+n+1)/3/n/(n+1) ; numer(%) ; end: seq(A158622(n),n=2..100) ; # R. J. Mathar, Mar 27 2009
  • Mathematica
    Table[Product[k^3-1,{k,2,n}]/Product[k^3+1,{k,2,n}],{n,2,60}]//Numerator (* Harvey P. Dale, Feb 26 2020 *)

Formula

Numerator of (Product_{k=2..n} (k^3-1))/Product_{k=2..n} (k^3+1) = numerator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 + x^7 + x^6 - 2*x^5 + 4*x^4 + 10*x^3 + 7*x^2 + 13*x + 7) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009
Previous Showing 11-20 of 39 results. Next