cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 102 results. Next

A287016 a(n) = smallest number k such that A071904(n) + k^2 is a perfect square.

Original entry on oeis.org

0, 1, 2, 0, 3, 4, 1, 5, 2, 0, 7, 3, 8, 1, 4, 10, 5, 2, 0, 6, 13, 3, 14, 7, 1, 4, 17, 9, 2, 5, 0, 19, 10, 20, 6, 3, 22, 1, 12, 7, 4, 13, 25, 8, 2, 0, 5, 9, 28, 29, 16, 3, 6, 1, 32, 11, 18, 7, 4, 34, 19, 12, 35, 2, 0, 5, 21, 38, 9, 14, 3, 40, 6, 1, 15, 10, 24
Offset: 1

Views

Author

Keywords

Examples

			The third odd composite number is A071904(3) = 21. and 21+2^2 = 25 = 5^2, so a(3) = 2.
		

Crossrefs

Subsequence of A068527.

Programs

  • Mathematica
    q[n_] := SelectFirst[Range[0, (n-1)/2], IntegerQ@ Sqrt[#^2 + n] &]; q /@ Select[Range[1, 300, 2], CompositeQ] (* Giovanni Resta, May 18 2017 *)
  • Python
    from sympy import primepi, divisors
    from sympy.ntheory.primetest import is_square
    def A287016(n):
        if n == 1: return 0
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return 0 if is_square(int(m)) else -(d:=divisors(m))[l:=(len(d)>>1)-1]+d[l+1]>>1 # Chai Wah Wu, Aug 02 2024

Formula

a(m) = 0 for m>0 in A037040, the corresponding odd composites being in A016754\{1}. - Michel Marcus, May 19 2017

Extensions

More terms from Giovanni Resta, May 18 2017

A365476 a(n) is the minimum of A000120(k)*A000120(A071904(n)/k) for divisors k of the n-th odd composite number A071904(n) other than 1 and A071904(n).

Original entry on oeis.org

4, 4, 6, 4, 4, 6, 6, 6, 4, 9, 4, 6, 6, 6, 6, 8, 6, 9, 4, 4, 8, 9, 10, 6, 4, 6, 6, 8, 6, 6, 9, 6, 6, 8, 9, 8, 10, 9, 8, 6, 4, 10, 8, 12, 4, 9, 6, 6, 10, 10, 6, 6, 6, 4, 6, 12, 6, 6, 9, 8, 8, 15, 6, 6, 6, 6, 10, 10, 6, 6, 9, 8, 12, 8, 9, 8, 8, 8, 9, 9, 10, 8, 9, 4, 6, 10, 4, 12, 12, 8, 10, 10, 6
Offset: 1

Views

Author

Robert Israel, Sep 04 2023

Keywords

Comments

a(n) = 4 iff A071904(n) is the product of two (not necessarily distinct) members of A000051.
a(n) >= A000120(A071904(n)) because A000120(x) * A000120(y) >= A000120(x*y).
a(n) <= A349494(A071904(n)).

Examples

			a(9) = 4 because A071904(9) = 45 = 3 * 15 = 5 * 9 with A000120(3) * A000120(15) = 2 * 4 = 8 and A000120(5) * A000120(9) = 2 * 2 = 4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) convert(convert(n, base, 2), `+`) end proc:
    f:= proc(n) local t, r;
          min(seq(g(t)*g(n/t), t = numtheory:-divisors(n) minus {1,n}))
        end proc:
    map(f, remove(isprime, [seq(i,i=3..1000,2)]));
  • Python
    from sympy import primepi, divisors
    def A365476(n):
        if n == 1: return 4
        m, k = n, primepi(n) + n + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n + (k>>1)
        return min(int(d).bit_count()*int(m//d).bit_count() for d in divisors(m,generator=True) if 1Chai Wah Wu, Aug 02 2024

A378814 a(n) = round(n/(A000005(A071904(n))-2)).

Original entry on oeis.org

1, 1, 2, 4, 3, 3, 4, 4, 2, 10, 6, 6, 7, 4, 8, 8, 4, 9, 6, 10, 11, 11, 12, 12, 6, 4, 14, 14, 7, 15, 31, 16, 17, 17, 18, 6, 19, 19, 20, 10, 10, 21, 22, 22, 8, 46, 12, 12, 25, 25, 26, 26, 9, 9, 28, 28, 29, 15, 30, 30, 31, 31, 32, 32, 9, 11, 34, 34, 17, 18, 36
Offset: 1

Views

Author

Bill McEachen, Dec 08 2024

Keywords

Comments

Nearly all of the data falls on lines discussed below. There are a few "outliers" visible on the graph. There are <120 such outliers in the first 20000 terms (about 0.6%). Many of the outlier indices belong to A037040. The lines are n, (n+0)/2, (n+2)/4, (n+4)/6, (n+6)/8,....

Examples

			Let n=14, A071904(n)=63, tau(63)=6 so a(14)=round(14/(6-2))=4.
		

Crossrefs

Programs

  • Mathematica
    MapIndexed[Floor[#2[[1]]/# + 1/2] &, DivisorSigma[0, Select[Range[9, 500, 2], CompositeQ]] - 2] (* Paolo Xausa, Dec 16 2024 *)

A306848 Product of first n odd nonprimes, a(n) = Product_{k=1..n} A071904(k).

Original entry on oeis.org

1, 9, 135, 2835, 70875, 1913625, 63149625, 2210236875, 86199238125, 3878965715625, 190069320065625, 9693535323346875, 533144442784078125, 30389233238692453125, 1914521694037624546875, 124443910112445595546875, 8586629797758746092734375
Offset: 0

Views

Author

Zhandos Mambetaliyev, Mar 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn = 70}, FoldList[Times, Complement[Range[1, nn, 2], Prime@ Range[2, PrimePi@ nn]]]] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    lista(nn) = {my(p=1); print1(p, ", "); forcomposite (n=1, nn, if (n%2, p *= n; print1(p, ", ")); ); } \\ Michel Marcus, Mar 13 2019

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A003881 Decimal expansion of Pi/4.

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2, 6, 6, 9, 9, 5, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023

Examples

			0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016
		

References

  • Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 437.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.
  • Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
  • J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 119.

Crossrefs

Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A001622.

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
       machin = 4 * arccot 5 unity - arccot 239 unity
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
        | term == 0 = summa
        | otherwise = arccot'
          x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
        where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 20 2012
    
  • Magma
    R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
  • Maple
    evalf(Pi/4) ;
  • Mathematica
    RealDigits[N[Pi/4,6! ]]  (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
    (* PROGRAM STARTS *)
    (* Define the nested radicals a_k by recurrence *)
    a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
    (* Example of Pi/4 approximation at K = 100 *)
    Print["The actual value of Pi/4 is"]
    N[Pi/4, 40]
    Print["At K = 100 the approximated value of Pi/4 is"]
    K := 100;  (* the truncating integer *)
    N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
    (* Error terms for Pi/4 approximations *)
    Print["Error terms for Pi/4"]
    k := 1; (* initial value of the index k *)
    K := 10; (* initial value of the truncating integer K *)
    sqn := {}; (* initiate the sequence *)
    AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
    While[K <= 30,
    AppendTo[sqn, {K,
       N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
        N}]; K++]
    Print[MatrixForm[sqn]]
    (* Sanjar Abrarov, Jan 09 2017 *)
  • PARI
    Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
    
  • SageMath
    # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
    def FastLeibniz(n):
        b = 2^(2*n-1); c = b; s = 0
        for k in range(n-1,-1,-1):
            t = 2*k+1
            s = s + c/t if is_even(k) else s - c/t
            b *= (t*(k+1))/(2*(n-k)*(n+k))
            c += b
        return s/c
    A003881 = RealField(3333)(FastLeibniz(1330))
    print(A003881)  # Peter Luschny, Nov 20 2012
    

Formula

Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - Mats Granvik, Feb 23 2011
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
Equals Product_{k>=2} ((k + 1)^(k*(2*k + 1))*(k - 1)^(k*(2*k - 1)))/k^(4*k^2). - Antonio Graciá Llorente, Apr 12 2025
Equals Integral_{x=sqrt(2)..oo} dx/(x*sqrt(x^2 - 1)). - Kritsada Moomuang, May 29 2025

Extensions

a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012

A014076 Odd nonprimes.

Original entry on oeis.org

1, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207
Offset: 1

Views

Author

Keywords

Comments

Same as A071904 except for the initial term 1 (which is not composite).
Numbers n such that product of first n odd numbers divided by sum of the first n odd numbers is an integer : 1*3*5*...*(2*n - 1) / (1 + 3 + 5 + ... + (2*n - 1)) = c. - Ctibor O. Zizka, Jun 26 2010
Conjecture: There exist infinitely many pairs [a(n), a(n)+6] such that a(n)/3 and (a(n)+6)/3 are twin primes. - Eric Desbiaux, Sep 25 2014.
Odd numbers 2*n + 1 such that (2*n)!/(2*n + 1) is an integer. Odd terms of A056653. - Peter Bala, Jan 24 2017

Crossrefs

Cf. A002808, A005408; first differences: A067970, A196274; A047846.
Cf. A056653.

Programs

  • Haskell
    a014076 n = a014076_list !! (n-1)
    a014076_list = filter ((== 0) . a010051) a005408_list
    -- Reinhard Zumkeller, Sep 30 2011
    
  • Maple
    remove(isprime, [seq(i,i=1..1000,2)]); # Robert Israel, May 25 2016
    for n from 0 to 120 do
    if irem(factorial(2*n), 2*n+1) = 0 then print(2*n+1) end if;
    end do: # Peter Bala, Jan 24 2017
  • Mathematica
    Select[Range@210, !PrimeQ@ # && OddQ@ # &] (* Robert G. Wilson v, Sep 22 2008 *)
    Select[Range[1, 199, 2], PrimeOmega[#] != 1 &] (* Alonso del Arte, Nov 19 2012 *)
  • PARI
    is(n)=n%2 && !isprime(n) \\ Charles R Greathouse IV, Nov 24 2012
    
  • Python
    from sympy import primepi
    def A014076(n):
        if n == 1: return 1
        m, k = n-1, primepi(n) + n - 1 + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return m # Chai Wah Wu, Jul 31 2024

Formula

A000035(a(n))*(1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Sep 30 2011
a(n) ~ 2n. - Charles R Greathouse IV, Jul 02 2013
(a(n+2)-1)/2 - pi(a(n+2)-1) = n. - Anthony Browne, May 25 2016. Proof from Robert Israel: This follows by induction on n. If f(n) = (a(n+2)-1)/2 - pi(a(n+2)-1), one can show f(n+1) - f(n) = 1 (there are three cases to consider, depending on primeness of a(n+2) + 2 and a(n+2) + 4).
Union of A091113 and A091236. - R. J. Mathar, Oct 02 2018

A379720 Except a(0)=1 and a(4)=0, number of integer partitions of n with no 1's and at least two parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 3, 3, 6, 7, 11, 13, 20, 23, 33, 40, 54, 65, 87, 104, 136, 164, 209, 252, 319, 382, 477, 573, 707, 846, 1038, 1237, 1506, 1793, 2166, 2572, 3093, 3659, 4377, 5169, 6152, 7244, 8590, 10086, 11913, 13958, 16423, 19195, 22518, 26251, 30700, 35716
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2025

Keywords

Comments

Also partitions of n such that all parts are > 1 and have product > n.
Allowing 1's gives A114324, ranks A325037. The strict case is A318029 (except first term).

Examples

			The a(5) = 1 through a(11) = 13 partitions:
  (3,2)  (3,3)    (4,3)    (4,4)      (5,4)      (5,5)        (6,5)
         (4,2)    (5,2)    (5,3)      (6,3)      (6,4)        (7,4)
         (2,2,2)  (3,2,2)  (6,2)      (7,2)      (7,3)        (8,3)
                           (3,3,2)    (3,3,3)    (8,2)        (9,2)
                           (4,2,2)    (4,3,2)    (4,3,3)      (4,4,3)
                           (2,2,2,2)  (5,2,2)    (4,4,2)      (5,3,3)
                                      (3,2,2,2)  (5,3,2)      (5,4,2)
                                                 (6,2,2)      (6,3,2)
                                                 (3,3,2,2)    (7,2,2)
                                                 (4,2,2,2)    (3,3,3,2)
                                                 (2,2,2,2,2)  (4,3,2,2)
                                                              (5,2,2,2)
                                                              (3,2,2,2,2)
		

Crossrefs

For <= instead of < we have A002865 = partitions into parts > 1.
These partitions have ranks A071904 (except initial terms).
Set a(4) = 1 to get A083751.
A000041 counts integer partitions, strict A000009.
A379668 counts partitions without 1's by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Plus@@#
    				

Formula

Except for n = 0 and n = 4, we have a(n) = A002865(n) - 1.

A007535 Smallest pseudoprime ( > n ) to base n: smallest composite number m > n such that n^(m-1)-1 is divisible by m.

Original entry on oeis.org

4, 341, 91, 15, 124, 35, 25, 9, 28, 33, 15, 65, 21, 15, 341, 51, 45, 25, 45, 21, 55, 69, 33, 25, 28, 27, 65, 45, 35, 49, 49, 33, 85, 35, 51, 91, 45, 39, 95, 91, 105, 205, 77, 45, 76, 133, 65, 49, 66, 51, 65, 85, 65, 55, 63, 57, 65, 133, 87, 341, 91, 63, 341, 65, 112, 91
Offset: 1

Views

Author

Keywords

Comments

a(k-1) = k for odd composite numbers k = {9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, ...} = A071904(n). - Alexander Adamchuk, Dec 13 2006

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 42 (but beware errors in his table for n = 28, 58, 65, 77, 100).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Records in A098653 & A098654.

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a007535 n = head [m | m <- dropWhile (<= n) a002808_list,
                          powerMod n (m - 1) m == 1]
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Mathematica
    f[n_] := Block[{k = n + 1}, While[PrimeQ[k] || PowerMod[n, k - 1, k] != 1, k++ ]; k]; Table[ f[n], {n, 67}] (* Robert G. Wilson v, Sep 18 2004 *)
  • PARI
    a(n)=forcomposite(m=n+1,, if(Mod(n, m)^(m-1)==1, return(m))) \\ Charles R Greathouse IV, May 18 2015

Extensions

Corrected and extended by Patrick De Geest, October 2000

A024556 Odd squarefree composite numbers.

Original entry on oeis.org

15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 105, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 165, 177, 183, 185, 187, 195, 201, 203, 205, 209, 213, 215, 217, 219, 221, 231, 235, 237, 247, 249, 253, 255, 259, 265, 267, 273
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2000

Keywords

Comments

Composite numbers n such that Sum_{k=1..n-1} floor(k^3/n) = (1/4)*(n-2)*(n^2-1) (equality also holds for all primes). - Benoit Cloitre, Dec 08 2002

Crossrefs

Intersection of A056911 and A071904.
Subsequence of A061346.

Programs

  • Haskell
    a024556 n = a024556_list !! (n-1)
    a024556_list = filter ((== 0) . a010051) $ tail a056911_list
    -- Reinhard Zumkeller, Apr 12 2012
    
  • Mathematica
    Complement[Select[Range[3,281,2],SquareFreeQ],Prime[Range[PrimePi[281]]]] (* Harvey P. Dale, Jan 26 2011 *)
  • PARI
    is(n)=n>1&&n%2&&!isprime(n)&&issquarefree(n) \\ Charles R Greathouse IV, Apr 12 2012
    
  • PARI
    forstep(n=3,273,2,k=omega(n);if(k>1&&bigomega(n)==k,print1(n,", "))) \\ Hugo Pfoertner, Dec 19 2018

Formula

a(n) = (Pi^2/4)*n + O(n/log n). - Charles R Greathouse IV, Mar 12 2025

Extensions

More terms from James Sellers, May 22 2000
Previous Showing 11-20 of 102 results. Next