cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A137204 Decimal expansion of e + 1/e.

Original entry on oeis.org

3, 0, 8, 6, 1, 6, 1, 2, 6, 9, 6, 3, 0, 4, 8, 7, 5, 5, 6, 9, 5, 5, 8, 1, 1, 2, 4, 1, 5, 1, 4, 1, 2, 3, 3, 6, 5, 2, 0, 3, 0, 5, 8, 2, 2, 4, 7, 3, 1, 7, 2, 7, 4, 0, 9, 4, 7, 4, 8, 0, 4, 4, 2, 9, 4, 2, 1, 5, 3, 8, 1, 2, 6, 0, 9, 8, 4, 4, 7, 3, 9, 7, 9, 2, 8, 5, 2, 9, 4, 5, 2, 8, 7, 1, 0, 8, 6, 0, 7, 1, 1, 7, 4, 0, 9
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 04 2008

Keywords

Examples

			3.086161269630487556955811241514123365203058224731727...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E + 1/E, 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)
  • PARI
    exp(1)+1/exp(1) \\ Michel Marcus, Mar 14 2013

Formula

Equals 2*A073743. - Bruno Berselli, Mar 14 2013

A143821 Decimal expansion of the constant 1/2! + 1/5! + 1/8! + ... = 0.50835 81599 84216 ... .

Original entry on oeis.org

5, 0, 8, 3, 5, 8, 1, 5, 9, 9, 8, 4, 2, 1, 6, 8, 6, 3, 5, 4, 2, 6, 9, 3, 9, 2, 6, 7, 1, 9, 9, 9, 0, 3, 6, 2, 3, 4, 3, 2, 3, 0, 2, 2, 6, 8, 6, 2, 5, 0, 3, 5, 9, 9, 0, 3, 5, 3, 3, 7, 1, 3, 9, 6, 1, 5, 4, 1, 1, 4, 4, 2, 7, 1, 9, 2, 6, 7, 9, 9, 3, 1, 8, 7, 6, 4, 7, 0, 2, 4, 0, 0, 9, 5, 4, 6, 5, 8, 2, 5
Offset: 0

Views

Author

Peter Bala, Sep 03 2008

Keywords

Comments

Define a sequence of real numbers R(n) by R(n) := Sum_{k >= 0} (3*k)^n/(3*k)! for n = 0,1,2... . This constant is R(1); the decimal expansions of R(0) = 1 + 1/3!+ 1/6! + 1/9! + ... and R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... may be found in A143819 and A143820. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + Sum_{i = 0..n} binomial(n,i) *3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below.

Examples

			R(n) as a linear combination of R(0), R(1) and R(2) - R(1).
=======================================
..R(n)..|.....R(0).....R(1)...R(2)-R(1)
=======================================
..R(3)..|.......1........1........3....
..R(4)..|.......6........2........7....
..R(5)..|......25.......11.......16....
..R(6)..|......91.......66.......46....
..R(7)..|.....322......352......203....
..R(8)..|....1232.....1730.....1178....
..R(9)..|....5672.....8233.....7242....
..R(10).|...32202....39987....43786....
...
The column entries are from A143815, A143816 and A143817.
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[ -((Cos[Sqrt[3]/2] - E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E])), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)

Formula

Constant = (exp(1) + w*exp(w) + w^2*exp(w^2))/3, where w = exp(2*Pi*i/3). A143819 + A143820 + A143821 = exp(1).
Continued fraction: 1/(2 - 2/(61 - 60/(337 - 336/(991 - ... - P(n-1)/((P(n) + 1) - ... ))))), where P(n) = (3*n)*(3*n + 1)*(3*n + 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A073745 Decimal expansion of csch(1).

Original entry on oeis.org

8, 5, 0, 9, 1, 8, 1, 2, 8, 2, 3, 9, 3, 2, 1, 5, 4, 5, 1, 3, 3, 8, 4, 2, 7, 6, 3, 2, 8, 7, 1, 7, 5, 2, 8, 4, 1, 8, 1, 7, 2, 4, 6, 6, 0, 9, 1, 0, 3, 3, 9, 6, 1, 6, 9, 9, 0, 4, 2, 1, 1, 5, 1, 7, 2, 9, 0, 0, 3, 3, 6, 4, 3, 2, 1, 4, 6, 5, 1, 0, 3, 8, 9, 9, 7, 3, 0, 1, 7, 7, 3, 2, 8, 8, 9, 3, 8, 1, 2, 3, 6, 2, 4, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

csch(x) = 2/(e^x - e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.85091812823932154513384276328...
		

References

  • Samuel M. Selby (ed.), CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A068139 (continued fraction), A073742 (sinh(1)=1/A073745), A073743 (cosh(1)), A073744 (tanh(1)), A073746 (sech(1)), A073747 (coth(1)).

Programs

  • Mathematica
    RealDigits[Csch[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    1/sinh(1)

Formula

Equals Sum_{k>=0} B(2*k) * (2 - 2^(2*k)) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021

A068118 Continued fraction expansion for cosh(1).

Original entry on oeis.org

1, 1, 1, 5, 3, 3, 2, 1, 21, 1, 1, 1, 4, 2, 1, 48, 71, 7, 1, 1, 9, 1, 2, 1, 11, 1, 5, 1, 2, 3, 2, 2, 2, 1, 1, 2, 10, 1, 1, 5, 26, 1, 25, 1, 2, 1, 5, 1, 2, 2, 7, 1, 1, 8, 8, 2, 1, 7, 2, 1, 9, 1, 3, 1, 4, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 5, 1, 1, 3, 1, 1, 1, 3, 7, 183
Offset: 0

Views

Author

Benoit Cloitre, Mar 13 2002

Keywords

Comments

If an extra zero is added to the beginning of this sequence, continued fraction for sech(1) = 1/cosh(1). - Rick L. Shepherd, Aug 07 2002

Crossrefs

Cf. A068139, A073743 (decimal expansion), A073746 (decimal expansion of sech(1)).
Cf. A078982, A078983 (convergents).

Programs

  • Mathematica
    ContinuedFraction[Cosh[1],90] (* Harvey P. Dale, Apr 29 2013 *)

Extensions

Offset changed by Andrew Howroyd, Aug 05 2024

A344262 a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.

Original entry on oeis.org

1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0

Views

Author

Amrit Awasthi, May 13 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 =  (1+1)*1 =   2;
a(2) = (a(1)*2)+1 =  (2*2)+1 =   5;
a(3) = (a(2)+1)*3 =  (5+1)*3 =  18;
a(4) = (a(3)*4)+1 = (18*4)+1 =  73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)

Formula

E.g.f.: (x+1)*cosh(x)/(1-x). - Alois P. Heinz, May 14 2021
Lim_{n->infinity} a(n)/n! = 2*cosh(1) = A137204 = 2*A073743. - Amrit Awasthi, May 15 2021
a(n) = A344317(n) - A155521(n-1) for n > 0. - Alois P. Heinz, May 18 2021

A354334 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k)!.

Original entry on oeis.org

1, 3, 37, 1111, 6913, 799933, 739138093, 44841044309, 32285551902481, 9879378882159187, 1251387991740163687, 1734423756551866870183, 136771701945232930334431, 23048564587067030852654113, 42769754577382930342215977687, 409306551305554643375006906464591
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
    Accumulate[1/(2*Range[0,20])!]//Numerator (* Harvey P. Dale, Sep 05 2024 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354334(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).

A354335 a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.

Original entry on oeis.org

1, 2, 24, 720, 4480, 518400, 479001600, 29059430400, 20922789888000, 6402373705728000, 810967336058880000, 1124000727777607680000, 88635485961891348480000, 14936720782466875392000000, 27717122237428532772864000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354335(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022

Formula

Denominators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).

A052591 Expansion of e.g.f. x/((1-x)(1-x^2)).

Original entry on oeis.org

0, 1, 2, 12, 48, 360, 2160, 20160, 161280, 1814400, 18144000, 239500800, 2874009600, 43589145600, 610248038400, 10461394944000, 167382319104000, 3201186852864000, 57621363351552000, 1216451004088320000, 24329020081766400000, 562000363888803840000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Stirling transform of 2*a(n) = [2,4,24,96,...] is A052841(n+1) = [2,6,38,270,...]. - Michael Somos, Mar 04 2004
a(n) is the number of even fixed points in all permutations of {1,2,...,n+1}. Example: a(2)=2 because we have 12'3, 132, 312, 213, 231, and 32'1, the even fixed points being marked. - Emeric Deutsch, Jul 18 2009

Crossrefs

Cf. A052558. - Emeric Deutsch, Jul 18 2009

Programs

  • Maple
    spec := [S,{S=Prod(Z,Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    G(x):=x/(1-x)/(1-x^2): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(x/(1-x)/(1-x^2)+x*O(x^n),n))

Formula

Recurrence: {a(1)=1, a(0)=0, (-n^3 - 5*n^2 - 8*n - 4)*a(n) + (-2-n)*a(n+1) + (n+1)*a(n+2) = 0}.
a(n) = ((1/4)*(-1)^(1-n) + (1/2)*n + 1/4)*n!.
E.g.f.: x/((1-x)*(1-x^2)).
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) = (n+1)!/2 if n is odd; a(n) = n!*n/2 if n is even.
a(n) = (n+1)! - A052558(n). (End)
a(n) = n!*A008619(n-1), n > 1. - R. J. Mathar, Nov 27 2011
Sum_{n>=1} 1/a(n) = 2*(CoshIntegral(1) + cosh(1) - gamma - 1) = 2*(A099284 + A073743 - A001620 - 1). - Amiram Eldar, Jan 22 2023

A080049 Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of interchange operations in step L4.

Original entry on oeis.org

0, 2, 11, 63, 388, 2734, 21893, 197069, 1970726, 21678036, 260136487, 3381774403, 47344841720, 710172625898, 11362762014473, 193166954246169, 3477005176431178, 66063098352192544, 1321261967043851051, 27746501307920872271, 610423028774259190172, 14039729661807961374198
Offset: 2

Views

Author

Hugo Pfoertner, Jan 24 2003

Keywords

References

  • Donald E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 2, Generating All Tuples and Permutations. Addison-Wesley (2005). Chapter 7.2.1.2, 39-40.

Crossrefs

Programs

  • Fortran
    c FORTRAN program available at Pfoertner link.

Formula

a(2)=0, a(n)=n*a(n-1) + (n-1)*floor((n-1)/2).
c = limit n ->infinity a(n)/n! = 0.5430806.. = (e+1/e)/2-1 = A073743 - 1.
a(n) = floor (c*n! - (n-1)/2) for n>=2.

A109231 a(n) = floor(n*cosh(1)).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 98, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2005

Keywords

Comments

Beatty sequence for cosh(1) = (e+1/e)/2 = 1.54308...= A073743; complement of A109232.

Crossrefs

Previous Showing 11-20 of 42 results. Next