cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A103327 Triangle read by rows: T(n,k) = binomial(2n+1, 2k+1).

Original entry on oeis.org

1, 3, 1, 5, 10, 1, 7, 35, 21, 1, 9, 84, 126, 36, 1, 11, 165, 462, 330, 55, 1, 13, 286, 1287, 1716, 715, 78, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318.
Elements have the same parity as those of Pascal's triangle.
Matrix inverse is A104033. - Paul D. Hanna, Feb 28 2005
Row reverse of A091042. - Peter Bala, Jul 29 2013
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. Cf. A086645. - Peter Bala, Aug 06 2013
The row polynomial P(d, x) = Sum_{k=0..d} T(d, k)*x^k, multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,3] given in A292219. - Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, k) begins:
n\k   0    1     2      3      4      5      6     7    8   9  10 ...
0:    1
1:    3    1
2:    5   10     1
3:    7   35    21      1
4:    9   84   126     36      1
5:   11  165   462    330     55      1
6:   13  286  1287   1716    715     78      1
7:   15  455  3003   6435   5005   1365    105     1
8:   17  680  6188  19448  24310  12376   2380   136    1
9:   19  969 11628  50388  92378  75582  27132  3876  171   1
10:  21 1330 20349 116280 293930 352716 203490 54264 5985 210   1
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n+1)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + 9*y^4/9! + ....
2nd col: 1/3!*y*cosh(sqrt(y)) = y/3! + 10*y^2/5! + 35*y^3/7! + 84*y^4/9! + ....
3rd col: 1/5!*y^2*cosh(sqrt(y)) = y^2/5! + 21*y^3/7!! + 126*y^4/9! + 462*y^5/11! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Reflected version of A091042. Cf. A086645, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Flatten[Table[Binomial[2n+1,2k+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2014 *)
  • Maxima
    create_list(binomial(2*n+1,2*k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1+X*(1-Y))/((1+X*(1-Y))^2-4*X),n,x),k,y)} \\ Paul D. Hanna, Feb 28 2005
    
  • PARI
    T(n,k) = binomial(2*n+1, 2*k+1);
    for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(2*n+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f. for column k: Sum_{j=0..k+1} C(2*(k+1), 2*j)*x^j/(1-x)^(2*(k+1)). - Paul Barry, Feb 24 2005
G.f.: A(x, y) = (1 + x*(1-y))/( (1 + x*(1-y))^2 - 4*x ). - Paul D. Hanna, Feb 28 2005
Sum_{k=0..n} T(n, k)*A000364(n-k) = A002084(n). - Philippe Deléham, Aug 27 2005
E.g.f.: 1/sqrt(x)*sinh(sqrt(x)*t)*cosh(t) = t + (3 + x)*t^3/3! + (5 + 10*x + x^2)*t^5/5! + .... - Peter Bala, Jul 29 2013
T(n+2,k+2) = 2*T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k+2) + 2*T(n,k+1) - T(n,k). - Emanuele Munarini, Jul 05 2017

A086646 Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k).

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 26 2003

Keywords

Comments

The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^(n+k)*A086645(n,k). - R. J. Mathar, Mar 14 2013
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (1/E(-y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013
Let P_n be the poset of even size subsets of [2n] ordered by inclusion. Then Sum_{k=0..n}(-1)^(n-k)*T(n,k)*x^k is the characteristic polynomial of P_n. - Geoffrey Critzer, Feb 24 2021

Examples

			Triangle begins:
      1;
      1,     1;
      5,     6,     1;
     61,    75,    15,    1;
   1385,  1708,   350,   28,  1;
  50521, 62325, 12810, 1050, 45, 1;
  ...
From _Peter Bala_, Aug 06 2013: (Start)
Polynomial  |        Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x)     | 1, 9.18062, 13.91597
R(10,-x)    | 1, 9.00000, 25.03855,  37.95073
R(15,-x)    | 1, 9.00000, 25.00000,  49.00895, 71.83657
R(20,-x)    | 1, 9.00000, 25.00000,  49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Cf. A000281.
Cf. A000795 (row sums).
Cf. A055133, A086645 (unsigned matrix inverse), A103364, A104033.
T(2n,n) give |A214445(n)|.

Programs

  • Maple
    A086646 := proc(n,k)
        if k < 0 or k > n then
            0 ;
        else
            A000364(n-k)*binomial(2*n,2*k) ;
        end if;
    end proc: # R. J. Mathar, Mar 14 2013
  • Mathematica
    R[0, _] = 1;
    R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
    Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
    T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0Oliver Seipel, Jan 11 2025 *)

Formula

cosh(u*t)/cos(t) = Sum_{n>=0} S_2n(u)*(t^(2*n))*(1/(2*n)!). S_2n(u) = Sum_{k>=0} T(n,k)*u^(2*k). Sum_{k>=0} (-1)^k*T(n,k) = 0. Sum_{k>=0} T(n,k) = 2^n*A005647(n); A005647: Salie numbers.
Triangle T(n,k) read by rows; given by [1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Sum_{k=0..n} (-1)^k*T(n,k)*4^(n-k) = A000281(n). - Philippe Deléham, Jan 26 2004
Sum_{k=0..n} T(n,k)*(-4)^k*9^(n-k) = A002438(n+1). - Philippe Deléham, Aug 26 2005
Sum_{k=0..n} (-1)^k*9^(n-k)*T(n,k) = A000436(n). - Philippe Deléham, Oct 27 2006
From Peter Bala, Aug 06 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Generating function: E(x*y)/E(-y) = 1 + (1 + x)*y/2! + (5 + 6*x + x^2)*y^2/4! + (61 + 75*x + 15*x^2 + x^3)*y^3/6! + .... The n-th power of this array has a generating function E(x*y)/E(-y)^n. In particular, the matrix inverse is a signed version of A086645 with a generating function E(-y)*E(x*y).
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} (-1)^(n-k)*binomial(2*n,2*k)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary complex x we have lim_{n -> infinity} R(n,-x^2)/R(n,0) = cos(x*Pi/2). A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,-x) seem to converge to the odd squares 1, 9, 25, ... as n increases. Some numerical examples are given below. Cf. A055133, A091042 and A103364.
R(n,-1) = 0; R(n,-9) = (-1)^n*2*4^n; R(n,-25) = (-1)^n*2*(16^n - 4^n);
R(n,-49) = (-1)^n*2*(36^n - 16^n + 4^n). (End)

A090965 a(n) = 8*a(n-1) - 4*a(n-2), where a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 208, 1552, 11584, 86464, 645376, 4817152, 35955712, 268377088, 2003193856, 14952042496, 111603564544, 833020346368, 6217748512768, 46409906716672, 346408259682304, 2585626450591744, 19299378566004736
Offset: 0

Views

Author

Philippe Deléham, Feb 29 2004

Keywords

Crossrefs

Cf. A001075.
Sum_{k>=0} A086645(n,k)*m^k for m = 0, 1, 2, 4 gives A000007, A081294, A001541, A083884.

Programs

  • GAP
    a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-4*a[n-2]; od; a; # G. C. Greubel, Feb 03 2019
  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-4*x)/(1-8*x+4*x^2) )); // G. C. Greubel, Feb 03 2019
    
  • Mathematica
    LinearRecurrence[{8,-4}, {1,4}, 20] (* G. C. Greubel, Feb 03 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-4*x)/(1-8*x+4*x^2)) \\ G. C. Greubel, Feb 03 2019
    
  • Sage
    [lucas_number2(n,8,4)/2 for n in range(0,21)] # Zerinvary Lajos, Jul 08 2008
    

Formula

a(n) = Sum_{k>=0} binomial(2*n, 2*k)*3^k = Sum_{k>=0} A086645(n, k)*3^k.
a(n) = 2^n*A001075(n).
G.f.: (1-4*x)/(1-8*x+4*x^2). - Philippe Deléham, Sep 07 2009
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k-4)/(x*(3*k-1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
From Peter Bala, Feb 19 2022: (Start)
a(n) = Sum_{k = 0..floor(n/2)} 4^(n-2*k)*12^k*binomial(n,2*k).
a(n) = [x^n] (4*x + sqrt(1 + 12*x^2))^n.
G.f.: A(x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 8*x + 4*x^2) is the g.f. of A069835.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

Extensions

Corrected by T. D. Noe, Nov 07 2006

A127674 Coefficient table for Chebyshev polynomials T(2*n,x) (increasing even powers x, without zeros).

Original entry on oeis.org

1, -1, 2, 1, -8, 8, -1, 18, -48, 32, 1, -32, 160, -256, 128, -1, 50, -400, 1120, -1280, 512, 1, -72, 840, -3584, 6912, -6144, 2048, -1, 98, -1568, 9408, -26880, 39424, -28672, 8192, 1, -128, 2688, -21504, 84480, -180224, 212992, -131072, 32768, -1, 162, -4320, 44352, -228096, 658944, -1118208
Offset: 0

Views

Author

Wolfdieter Lang Mar 07 2007

Keywords

Comments

Let C_n be the root lattice generated as a monoid by {+-2*e_i: 1 <= i <= n; +-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(C_n) be the polytope formed by the convex hull of this generating set. Then the rows of (the signless version of) this array are the f-vectors of a unimodular triangulation of P(C_n) [Ardila et al.]. See A086645 for the corresponding array of h-vectors for these type C_n polytopes. See A063007 for the array of f-vectors for type A_n polytopes and A108556 for the array of f-vectors associated with type D_n polytopes. - Peter Bala, Oct 23 2008

Examples

			[1];
[-1,2];
[1,-8,8];
[-1,18,-48,32];
[1,-32,160,-256,128];
...
See a link for the row polynomials.
The T-polynomial for row n=3, [-1,18,-48,32], is T(2*3,x) =  -1*x^0 + 18*x^2 - 48*x^4 + 32*x^6.
		

References

  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).

Crossrefs

Cf. A075733 (different signs and offset). A084930 (coefficients of odd-indexed T-polynomials).
Cf. A053120 (coefficients of T-polynomials, with interspersed zeros).

Formula

a(n,m) = 0 if n < m, a(0,0) = 1; otherwise a(n,m) = ((-1)^(n-m))*(2^(2*m-1))*binomial(n+m,2*m)*(2*n)/(n+m).
O.g.f.: (1 + z*(1 - 2*x))/((1 + z)^2 - 4*x*z) = 1 + (-1 + 2*x)*z + (1 - 8*x + 8*x^2)*z^2 + ... . [Peter Bala, Oct 23 2008] For the t-polynomials actually with x -> x^2. - Wolfdieter Lang, Aug 02 2014
Denoting the row polynomials by R(n,x) we have exp( Sum_{n >= 1} R(n,x)*z^n/n ) = 1/sqrt( (1 + z)^2 - 4*x*z ) = 1 + (-1 + 2*x)*z + (1 - 6*x + 6*x^2)*z^2 + ..., the o.g.f. for a signed version of A063007. - Peter Bala, Sep 02 2015
The n-th row polynomial equals T(n, 2*x - 1). - Peter Bala, Jul 09 2023

A145905 Square array read by antidiagonals: Hilbert transform of triangle A060187.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0

Views

Author

Peter Bala, Oct 27 2008

Keywords

Comments

Definition of the Hilbert transform of a triangular array:
For many square arrays in the database the entries in a row are polynomial in the column index, of degree d say and hence the row generating function has the form P(x)/(1-x)^(d+1), where P is some polynomial function. Often the array whose rows are formed from the coefficients of these P polynomials is of independent interest. This suggests the following definition.
Let [L(n,k)]n,k>=0 be a lower triangular array and let R(n,x) := sum {k = 0 .. n} L(n,k)*x^k, denote the n-th row generating polynomial of L. Then we define the Hilbert transform of L, denoted Hilb(L), to be the square array whose n-th row, n >= 0, has the generating function R(n,x)/(1-x)^(n+1).
In this particular case, L is the array A060187, the array of Eulerian numbers of type B, whose row polynomials are the h-polynomials for permutohedra of type B. The Hilbert transform is an infinite Vandermonde matrix V(1,3,5,...).
We illustrate the Hilbert transform with a few examples:
(1) The Delannoy number array A008288 is the Hilbert transform of Pascal's triangle A007318 (view as the array of coefficients of h-polynomials of n-dimensional cross polytopes).
(2) The transpose of the array of nexus numbers A047969 is the Hilbert transform of the triangle of Eulerian numbers A008292 (best viewed in this context as the coefficients of h-polynomials of n-dimensional permutohedra of type A).
(3) The sequence of Eulerian polynomials begins [1, x, x + x^2, x + 4*x^2 + x^3, ...]. The coefficients of these polynomials are recorded in triangle A123125, whose Hilbert transform is A004248 read as square array.
(4) A108625, the array of crystal ball sequences for the A_n lattices, is the Hilbert transform of A008459 (viewed as the triangle of coefficients of h-polynomials of n-dimensional associahedra of type B).
(5) A142992, the array of crystal ball sequences for the C_n lattices, is the Hilbert transform of A086645, the array of h-vectors for type C root polytopes.
(6) A108553, the array of crystal ball sequences for the D_n lattices, is the Hilbert transform of A108558, the array of h-vectors for type D root polytopes.
(7) A086764, read as a square array, is the Hilbert transform of the rencontres numbers A008290.
(8) A143409 is the Hilbert transform of triangle A073107.

Examples

			Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
		

Crossrefs

Cf. A008292, A039755, A052750 (first superdiagonal), A060187, A114172, A145901.

Programs

  • Maple
    T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);

Formula

T(n,k) = (2*k + 1)^n, (see equation 4.10 in [Franssens]). This array is the infinite Vandermonde matrix V(1,3,5,7, ....) having a LDU factorization equal to A039755 * diag(2^n*n!) * transpose(A007318).

A103328 Triangle T(n, k) read by rows: binomial(2n, 2k+1).

Original entry on oeis.org

0, 2, 0, 4, 4, 0, 6, 20, 6, 0, 8, 56, 56, 8, 0, 10, 120, 252, 120, 10, 0, 12, 220, 792, 792, 220, 12, 0, 14, 364, 2002, 3432, 2002, 364, 14, 0, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 0, 18, 816, 8568, 31824, 48620, 31824, 8568, 816, 18, 0, 20, 1140, 15504
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318 with only even elements.

Examples

			Triangle begins
   0;
   2,   0;
   4,   4,    0;
   6,  20,    6,     0;
   8,  56,   56,     8,     0;
  10, 120,  252,   120,    10,    0;
  12, 220,  792,   792,   220,   12,   0;
  14, 364, 2002,  3432,  2002,  364,  14,  0;
  16, 560, 4368, 11440, 11440, 4368, 560, 16, 0;
  ...
From _Peter Bala_, Jan 30 2022: (Start)
(1/2)*(N^2 + N)^2 = 2*Sum_{j = 1..N} j^3.
(1/2)*(N^2 + N)^4 = 4*Sum_{j = 1..N} j^5 + 4*Sum_{j = 1..N} j^7.
(1/2)*(N^2 + N)^6 = 6*Sum_{j = 1..N} j^7 + 20*Sum_{j = 1..N} j^9 + 6*Sum_{j = 1..N} j^11.
(1/2)*(N^2 + N)^8 = 8*Sum_{j = 1..N} j^9 + 56*Sum_{j = 1..N} j^11 + 56*Sum_{j = 1..N} j^13 + 8*Sum_{j = 1..N} j^15. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Formula

From Peter Bala, Jan 31 2022: (Start)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), with T(0,0) = 0, T(1,0) = 2 and T(n,k) = 0 if k < 0 or if k > n-1.
n-th row polynomial R(n,x) = (1/(2*sqrt(x)))*( (1 + sqrt(x))^(2*n) - (1 - sqrt(x))^(2*n) ).
O.g.f.: A(x,t) = 2*t/(1 - 2*(x + 1)*t + (x - 1)^2*t^2) = 2*t + (4 + 4*x)*t^2 + (6 + 20*x + 6*x^2)*t^3 + ....
G.f.: (1/sqrt(x))*sinh(t)*sinh(sqrt(x)*t) = 2*t^2/2! + (4 + 4*x)*t^4/4! + (6 + 20*x^2 + 6*x^3)*t^6/6! + ....
O.g.f. for n-th diagonal: ( Sum_{k = 0..n} binomial(2*n,2*k+1)*x^k )/(1 - x)^(2*n) = 1/(2*sqrt(x))*((1 - sqrt(x))^(-2*n) - (1 + sqrt(x))^(-2*n)).
With a different offset, 2/(x-4)*A(x/(x-4), t*(x-4)/4) = t/(1 + t*(2 - x) + t^2) is a g.f. of A053122.
Define S(r,N) = Sum_{j = 1..N} j^r. Then the following identity holds for n >= 1:
(1/2)*(N^2 + N)^(2*n) = T(n,0)*S(2*n+1,N) + T(n,1)*S(2*n+3,N) + ... + T(n,n-1)*S(4*n-1,N). Some examples are given below. (End)

A108558 Symmetric triangle, read by rows, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice, for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 20, 54, 20, 1, 1, 35, 180, 180, 35, 1, 1, 54, 447, 852, 447, 54, 1, 1, 77, 931, 2863, 2863, 931, 77, 1, 1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1, 1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1, 1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2005

Keywords

Comments

Row n equals the (n+1)-th differences of row n of the square array A108553. G.f. of row n equals: (1-x)^(n+1)*CBD_n(x), where CBD_n denotes the g.f. of the crystal ball sequence for D_n lattice.
From Peter Bala, Oct 23 2008: (Start)
Let D_n be the root lattice generated as a monoid by {+-e_i +- e_j: 1 <= i not equal to j <= n}. Let P(D_n) be the polytope formed by the convex hull of this generating set. Then the rows of this array are the h-vectors of a unimodular triangulation of P(D_n) [Ardila et al.]. See A108556 for the corresponding array of f-vectors for these type D_n polytopes. See A008459 for the array of h-vectors for type A_n polytopes and A086645 for the array of h-vectors associated with type C_n polytopes.
The Hilbert transform of this array (as defined in A145905) equals A108553.
(End)

Examples

			G.f.s of initial rows of square array A108553 are:
  (1)/(1-x),
  (1 + x)/(1-x)^2,
  (1 + 2*x + x^2)/(1-x)^3,
  (1 + 9*x + 9*x^2 + x^3)/(1-x)^4,
  (1 + 20*x + 54*x^2 + 20*x^3 + x^4)/(1-x)^5,
  (1 + 35*x + 180*x^2 + 180*x^3 + 35*x^4 + x^5)/(1-x)^6.
Triangle begins:
  1;
  1,   1;
  1,   2,    1;
  1,   9,    9,     1;
  1,  20,   54,    20,      1;
  1,  35,  180,   180,     35,      1;
  1,  54,  447,   852,    447,     54,      1;
  1,  77,  931,  2863,   2863,    931,     77,     1;
  1, 104, 1724,  7768,  12550,   7768,   1724,   104,    1;
  1, 135, 2934, 18186,  43128,  43128,  18186,  2934,  135,   1;
  1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1;
  ...
		

Crossrefs

Cf. A108553, A008353, A108558, A008459, A086645, A108556. Row n equals (n+1)-th differences of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).
T(2n,n) gives A305693.

Programs

  • Mathematica
    T[1, 0] = T[1, 1]=1; T[n_, k_] := Binomial[2n, 2k] - 2n Binomial[n-2, k-1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    T(n,k)=if(n
    				

Formula

T(n, k) = C(2*n, 2*k) - 2*n*C(n-2, k-1) for n>1, with T(0, 0)=1, T(1, 0)=T(1, 1)=1. Row sums equal A008353: 2^(n-1)*(2^n-n) for n>1.
From Peter Bala, Oct 23 2008: (Start)
O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + x)*z + (3 + 2*x + 3*x^2)*z^2 - (1 + x)*(1 - 8*x + x^2)z^3 - 8*x*(1 + x^2)*z^4 + 2*x*(1 + x)*(1 - x)^2*z^5 and D(x,z) = ((1 - z)^2 - 2*x*z*(1 + z) + x^2*z^2)*(1 - z*(1 + x))^2.
For n >= 2, the row n generating polynomial equals 1/2*[(1 + sqrt(x))^(2n) + (1 - sqrt(x))^(2n)] - 2*n*x*(1 + x)^(n-2).
(End)

A026244 a(n) = 4^n*(4^n+1)/2.

Original entry on oeis.org

1, 10, 136, 2080, 32896, 524800, 8390656, 134225920, 2147516416, 34359869440, 549756338176, 8796095119360, 140737496743936, 2251799847239680, 36028797153181696, 576460752840294400, 9223372039002259456, 147573952598266347520, 2361183241469182345216
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A052539.

Programs

Formula

From Paul Barry, Mar 11 2004: (Start)
With interpolated zeros 0, 1, 0, 10, ... has a(n) = (4^n - (-4)^n + 2*2^n - 2*(-2)^n)/16 and counts walks of length n between adjacent vertices of the 4-cube.
G.f.: (1 - 10*x)/((1 - 4*x)*(1 - 16*x)). (End)
From Philippe Deléham, Sep 08 2009: (Start)
a(n) = Sum_{k = 0..n} 9*k*binomial(2n, 2k) = Sum_{k = 0..n} 9^k*A086645(n, k);
a(n) = 8^n*T(n,5/4) where T is the Chebyshev polynomial of first kind;
e.g.f.: exp(10*x)*cosh(6*x). (End)
a(n) = (2*(n+1))! * [x^(2*(n+1))] (cosh(x)^4-1)/4. - Vladimir Kruchinin, Oct 19 2016
a(n) = 64^n * a(-n) for all n in Z. - Michael Somos, Jul 02 2017

A104033 Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).

Original entry on oeis.org

1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0

Views

Author

Paul D. Hanna, Feb 28 2005

Keywords

Comments

Column 0 equals signed A009843 (expansion of x/cosh(x)). Row sums form signed A000182 (expansion of tanh(x)).
The matrix logarithm is L(n,k) = -(-1)^(n-k)*A000182(n-k)*A103327(n,k), where A000182 = tangent numbers.
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... so that 1/E(y) = 1 - 3*y/3! + 25*y^2/5! - 427*y^3/7! + .... Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013

Examples

			Rows begin:
1;
-3, 1;
25, -10, 1;
-427, 175, -21, 1;
12465, -5124, 630, -36, 1;
-555731 ,228525, -28182, 1650, -55, 1;
35135945, -14449006, 1782495, -104676, 3575, -78, 1;
-2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1;
329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ...
From _Peter Bala_, Aug 06 2013: (Start)
The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases.
Polynomial |        Real zeros to 6 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 3.999986
R(10,x)    | 4.000000, 15.999978
R(15,x)    | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

Column k: Sum_{j=0..n} C(2*n+1, 2*j+1) * T(j, k) = 0 (n>k), or 1 (n=k).
Row n: Sum_{j=0..n} T(n, j) * C(2*j+1, 2*k+1) = 0 (k
Sum_{k=0..n} T(n, k) * 4^k = 1 for n >= 0.
T(n, k) = (-1)^(n-k)*A000364(n-k)*A103327(n, k), where A000364 = Euler numbers.
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A002084(n). - Philippe Deléham, Aug 27 2005
From Peter Bala, Aug 06 2013: (Start)
Generating function: 1/sqrt(x)*sinh(sqrt(x)*t)/cosh(t) = t + (-3 + x)*t^3/3! + (25 - 10*x + x^2)*t^5/5! + ....
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(2*n+1,2*k+1)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary nonzero complex x we have
lim_{n -> inf} R(n,x^2)/R(n,0) = (1/(Pi/2*x))*sin(Pi/2*x).
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the even squares 4, 16, 36, ... as n increases. Some numerical examples are given below. Cf. A055133, A086646 and A103364.
If p = 2*n + 1 is a prime then all the entries in row n are divisible by p, apart from T(n,n) = 1. Thus the row sum is congruent to 1 modulo p.
Row sums R(n,1) = (-1)^n*A000182(n+1).
R(n,4) = 1; R(n,16) = (1/2)*( 3^(2*n+1) - 1 ) = A096053(n);
R(n,36) = (1/3)*( 5^(2*n+1) - 3^(2*n+1) + 1 );
R(n,64) = (1/4)*( 7^(2*n+1) - 5^(2*n+1) + 3^(2*n+1) - 1 ). (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A119275 Inverse of triangle related to Padé approximation of exp(x).

Original entry on oeis.org

1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0

Author

Paul Barry, May 12 2006

Keywords

Comments

Inverse of A119274.
Row sums are (-1)^(n+1)*A000321(n+1).
Bell polynomials of the second kind B(n,k)(1,-2). - Vladimir Kruchinin, Mar 25 2011
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) giving unsigned values and adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
		

Crossrefs

Cf. A059344 (unsigned row reverse).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_matrix from A265605]
    # Unsigned values and an additional first column (1,0,0, ...).
    multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015

Formula

T(n,k) = [k<=n]*(-1)^(n-k)*(n-k)!*C(n+1,k+1)*C(k+1,n-k).
From Peter Bala, May 07 2012: (Start)
E.g.f.: exp(x*(t-t^2)) - 1 = x*t + (-2*x+x^2)*t^2/2! + (-6*x^2+x^3)*t^3/3! + (12*x^2-12*x^3+x^4)*t^4/4! + .... Cf. A059344. Let D denote the operator sum {k >= 0} (-1)^k/k!*x^k*(d/dx)^(2*k). The n-th row polynomial R(n,x) = D(x^n) and satisfies the recurrence equation R(n+1,x) = x*R(n,x)-2*n*x*R(n-1,x). The e.g.f. equals D(exp(x*t)).
(End)
From Tom Copeland, Oct 11 2016: (Start)
With initial index n = 1 and unsigned, these are the partition row polynomials of A130561 and A231846 with c_1 = c_2 = x and c_n = 0 otherwise. The first nonzero, unsigned element of each diagonal is given by A001813 (for each row, A001815) and dividing along the corresponding diagonal by this element generates A098158 with its first column removed (cf. A034839 and A086645).
The n-th polynomial is generated by (x - 2y d/dx)^n acting on 1 and then evaluated at y = x, e.g., (x - 2y d/dx)^2 1 = (x - 2y d/dx) x = x^2 - 2y evaluated at y = x gives p_2(x) = -2x + x^2.
(End)
Previous Showing 11-20 of 38 results. Next