A103327
Triangle read by rows: T(n,k) = binomial(2n+1, 2k+1).
Original entry on oeis.org
1, 3, 1, 5, 10, 1, 7, 35, 21, 1, 9, 84, 126, 36, 1, 11, 165, 462, 330, 55, 1, 13, 286, 1287, 1716, 715, 78, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 3 1
2: 5 10 1
3: 7 35 21 1
4: 9 84 126 36 1
5: 11 165 462 330 55 1
6: 13 286 1287 1716 715 78 1
7: 15 455 3003 6435 5005 1365 105 1
8: 17 680 6188 19448 24310 12376 2380 136 1
9: 19 969 11628 50388 92378 75582 27132 3876 171 1
10: 21 1330 20349 116280 293930 352716 203490 54264 5985 210 1
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n+1)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + 9*y^4/9! + ....
2nd col: 1/3!*y*cosh(sqrt(y)) = y/3! + 10*y^2/5! + 35*y^3/7! + 84*y^4/9! + ....
3rd col: 1/5!*y^2*cosh(sqrt(y)) = y^2/5! + 21*y^3/7!! + 126*y^4/9! + 462*y^5/11! + .... (End)
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
-
[Binomial(2*n+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
-
Flatten[Table[Binomial[2n+1,2k+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2014 *)
-
create_list(binomial(2*n+1,2*k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1+X*(1-Y))/((1+X*(1-Y))^2-4*X),n,x),k,y)} \\ Paul D. Hanna, Feb 28 2005
-
T(n,k) = binomial(2*n+1, 2*k+1);
for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
-
[[binomial(2*n+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
A086646
Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k).
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 61, 75, 15, 1, 1385, 1708, 350, 28, 1, 50521, 62325, 12810, 1050, 45, 1, 2702765, 3334386, 685575, 56364, 2475, 66, 1, 199360981, 245951615, 50571521, 4159155, 183183, 5005, 91, 1, 19391512145, 23923317720, 4919032300, 404572168, 17824950, 488488, 9100, 120, 1
Offset: 0
Triangle begins:
1;
1, 1;
5, 6, 1;
61, 75, 15, 1;
1385, 1708, 350, 28, 1;
50521, 62325, 12810, 1050, 45, 1;
...
From _Peter Bala_, Aug 06 2013: (Start)
Polynomial | Real zeros to 5 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,-x) | 1, 9.18062, 13.91597
R(10,-x) | 1, 9.00000, 25.03855, 37.95073
R(15,-x) | 1, 9.00000, 25.00000, 49.00895, 71.83657
R(20,-x) | 1, 9.00000, 25.00000, 49.00000, 81.00205, 114.87399
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Tom Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
A086646 := proc(n,k)
if k < 0 or k > n then
0 ;
else
A000364(n-k)*binomial(2*n,2*k) ;
end if;
end proc: # R. J. Mathar, Mar 14 2013
-
R[0, _] = 1;
R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}];
Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 19 2019 *)
T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0Oliver Seipel, Jan 11 2025 *)
A090965
a(n) = 8*a(n-1) - 4*a(n-2), where a(0) = 1, a(1) = 4.
Original entry on oeis.org
1, 4, 28, 208, 1552, 11584, 86464, 645376, 4817152, 35955712, 268377088, 2003193856, 14952042496, 111603564544, 833020346368, 6217748512768, 46409906716672, 346408259682304, 2585626450591744, 19299378566004736
Offset: 0
-
a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-4*a[n-2]; od; a; # G. C. Greubel, Feb 03 2019
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-4*x)/(1-8*x+4*x^2) )); // G. C. Greubel, Feb 03 2019
-
LinearRecurrence[{8,-4}, {1,4}, 20] (* G. C. Greubel, Feb 03 2019 *)
-
my(x='x+O('x^20)); Vec((1-4*x)/(1-8*x+4*x^2)) \\ G. C. Greubel, Feb 03 2019
-
[lucas_number2(n,8,4)/2 for n in range(0,21)] # Zerinvary Lajos, Jul 08 2008
A127674
Coefficient table for Chebyshev polynomials T(2*n,x) (increasing even powers x, without zeros).
Original entry on oeis.org
1, -1, 2, 1, -8, 8, -1, 18, -48, 32, 1, -32, 160, -256, 128, -1, 50, -400, 1120, -1280, 512, 1, -72, 840, -3584, 6912, -6144, 2048, -1, 98, -1568, 9408, -26880, 39424, -28672, 8192, 1, -128, 2688, -21504, 84480, -180224, 212992, -131072, 32768, -1, 162, -4320, 44352, -228096, 658944, -1118208
Offset: 0
[1];
[-1,2];
[1,-8,8];
[-1,18,-48,32];
[1,-32,160,-256,128];
...
See a link for the row polynomials.
The T-polynomial for row n=3, [-1,18,-48,32], is T(2*3,x) = -1*x^0 + 18*x^2 - 48*x^4 + 32*x^6.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990. p. 37, eq.(1.96) and p. 4. eq.(1.10).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 795.
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- G. Boros, V. H. Moll, Landen transformations and the integration of rational functions, Math. Comp. 71 (238) (2001) 649-668, absolute values in Lemma A.3.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages) See p. 516.
- Wolfdieter Lang, Row polynomials.
- Richard J. Mathar, Chebyshev approximation of x^m (-log x)^l in the interval 0 <= x <= 1, arXiv:2408.15212 [math.CA], 2024. See p. 1.
- Index entries for sequences related to Chebyshev polynomials.
Cf.
A075733 (different signs and offset).
A084930 (coefficients of odd-indexed T-polynomials).
Cf.
A053120 (coefficients of T-polynomials, with interspersed zeros).
A145905
Square array read by antidiagonals: Hilbert transform of triangle A060187.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 5, 1, 1, 27, 25, 7, 1, 1, 81, 125, 49, 9, 1, 1, 243, 625, 343, 81, 11, 1, 1, 729, 3125, 2401, 729, 121, 13, 1, 1, 2187, 15625, 16807, 6561, 1331, 169, 15, 1, 1, 6561, 78125, 117649, 59049, 14641, 2197, 225, 17, 1, 1, 19683, 390625, 823543
Offset: 0
Triangle A060187 (with an offset of 0) begins
1;
1, 1;
1, 6, 1;
so the entries in the first three rows of the Hilbert transform of
A060187 come from the expansions:
Row 0: 1/(1-x) = 1 + x + x^2 + x^3 + ...;
Row 1: (1+x)/(1-x)^2 = 1 + 3*x + 5*x^2 + 7*x^3 + ...;
Row 2: (1+6*x+x^2)/(1-x)^3 = 1 + 9*x + 25*x^2 + 49*x^3 + ...;
The array begins
n\k|..0....1.....2.....3......4
================================
0..|..1....1.....1.....1......1
1..|..1....3.....5.....7......9
2..|..1....9....25....49.....81
3..|..1...27...125...343....729
4..|..1...81...625..2401...6561
5..|..1..243..3125.16807..59049
...
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- S. Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) [From _Tom Copeland_, Nov 09 2008]
-
T:=(n,k) -> (2*k + 1)^n: seq(seq(T(n-k,k),k = 0..n),n = 0..10);
A103328
Triangle T(n, k) read by rows: binomial(2n, 2k+1).
Original entry on oeis.org
0, 2, 0, 4, 4, 0, 6, 20, 6, 0, 8, 56, 56, 8, 0, 10, 120, 252, 120, 10, 0, 12, 220, 792, 792, 220, 12, 0, 14, 364, 2002, 3432, 2002, 364, 14, 0, 16, 560, 4368, 11440, 11440, 4368, 560, 16, 0, 18, 816, 8568, 31824, 48620, 31824, 8568, 816, 18, 0, 20, 1140, 15504
Offset: 0
Triangle begins
0;
2, 0;
4, 4, 0;
6, 20, 6, 0;
8, 56, 56, 8, 0;
10, 120, 252, 120, 10, 0;
12, 220, 792, 792, 220, 12, 0;
14, 364, 2002, 3432, 2002, 364, 14, 0;
16, 560, 4368, 11440, 11440, 4368, 560, 16, 0;
...
From _Peter Bala_, Jan 30 2022: (Start)
(1/2)*(N^2 + N)^2 = 2*Sum_{j = 1..N} j^3.
(1/2)*(N^2 + N)^4 = 4*Sum_{j = 1..N} j^5 + 4*Sum_{j = 1..N} j^7.
(1/2)*(N^2 + N)^6 = 6*Sum_{j = 1..N} j^7 + 20*Sum_{j = 1..N} j^9 + 6*Sum_{j = 1..N} j^11.
(1/2)*(N^2 + N)^8 = 8*Sum_{j = 1..N} j^9 + 56*Sum_{j = 1..N} j^11 + 56*Sum_{j = 1..N} j^13 + 8*Sum_{j = 1..N} j^15. (End)
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.
A108558
Symmetric triangle, read by rows, where row n equals the (n+1)-th differences of the crystal ball sequence for D_n lattice, for n>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 20, 54, 20, 1, 1, 35, 180, 180, 35, 1, 1, 54, 447, 852, 447, 54, 1, 1, 77, 931, 2863, 2863, 931, 77, 1, 1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1, 1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1, 1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1
Offset: 0
G.f.s of initial rows of square array A108553 are:
(1)/(1-x),
(1 + x)/(1-x)^2,
(1 + 2*x + x^2)/(1-x)^3,
(1 + 9*x + 9*x^2 + x^3)/(1-x)^4,
(1 + 20*x + 54*x^2 + 20*x^3 + x^4)/(1-x)^5,
(1 + 35*x + 180*x^2 + 180*x^3 + 35*x^4 + x^5)/(1-x)^6.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 20, 54, 20, 1;
1, 35, 180, 180, 35, 1;
1, 54, 447, 852, 447, 54, 1;
1, 77, 931, 2863, 2863, 931, 77, 1;
1, 104, 1724, 7768, 12550, 7768, 1724, 104, 1;
1, 135, 2934, 18186, 43128, 43128, 18186, 2934, 135, 1;
1, 170, 4685, 38200, 124850, 183356, 124850, 38200, 4685, 170, 1;
...
- Seiichi Manyama, Rows n = 0..139, flattened
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A (1997) 453, 2369-2389.
Cf.
A108553,
A008353,
A108558,
A008459,
A086645,
A108556. Row n equals (n+1)-th differences of:
A001844 (row 2),
A005902 (row 3),
A007204 (row 4),
A008356 (row 5),
A008358 (row 6),
A008360 (row 7),
A008362 (row 8),
A008377 (row 9),
A008379 (row 10).
-
T[1, 0] = T[1, 1]=1; T[n_, k_] := Binomial[2n, 2k] - 2n Binomial[n-2, k-1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 25 2018 *)
-
T(n,k)=if(n
A026244
a(n) = 4^n*(4^n+1)/2.
Original entry on oeis.org
1, 10, 136, 2080, 32896, 524800, 8390656, 134225920, 2147516416, 34359869440, 549756338176, 8796095119360, 140737496743936, 2251799847239680, 36028797153181696, 576460752840294400, 9223372039002259456, 147573952598266347520, 2361183241469182345216
Offset: 0
-
[4^n*(4^n+1)/2: n in [0..30]]; // Vincenzo Librandi, May 01 2011
-
seq(binomial(-4^n, 2), n=0..18); # Zerinvary Lajos, Feb 22 2008
-
Table[4^n (4^n + 1)/2, {n, 0, 19}] (* Alonso del Arte, Jun 18 2019 *)
LinearRecurrence[{20,-64},{1,10},20] (* Harvey P. Dale, Mar 09 2025 *)
-
a(n)=4^n*(4^n+1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)( * )).map((n: BigInt) => n * (n + 1)/2) // Alonso del Arte, Jun 22 2019
A104033
Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).
Original entry on oeis.org
1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0
Rows begin:
1;
-3, 1;
25, -10, 1;
-427, 175, -21, 1;
12465, -5124, 630, -36, 1;
-555731 ,228525, -28182, 1650, -55, 1;
35135945, -14449006, 1782495, -104676, 3575, -78, 1;
-2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1;
329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ...
From _Peter Bala_, Aug 06 2013: (Start)
The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases.
Polynomial | Real zeros to 6 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x) | 3.999986
R(10,x) | 4.000000, 15.999978
R(15,x) | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
-
{T(n,k) = if(n=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])}
for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
-
{T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!}
for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
A119275
Inverse of triangle related to Padé approximation of exp(x).
Original entry on oeis.org
1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0
Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
Cf.
A059344 (unsigned row reverse).
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
-
Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[inverse_bell_matrix from A265605]
# Unsigned values and an additional first column (1,0,0, ...).
multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015
Previous
Showing 11-20 of 38 results.
Next
Comments