cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 61 results. Next

A124506 Number of numerical semigroups with Frobenius number n; that is, numerical semigroups for which the largest integer not belonging to them is n.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 11, 10, 21, 22, 51, 40, 106, 103, 200, 205, 465, 405, 961, 900, 1828, 1913, 4096, 3578, 8273, 8175, 16132, 16267, 34903, 31822, 70854, 68681, 137391, 140661, 292081, 270258, 591443, 582453, 1156012
Offset: 1

Views

Author

P. A. Garcia-Sanchez (pedro(AT)ugr.es), Dec 18 2006

Keywords

Comments

From Gus Wiseman, Aug 28 2023: (Start)
Appears to be the number of subsets of {1..n} containing n such that no element can be written as a nonnegative linear combination of the others, first differences of A326083. For example, the a(1) = 1 through a(8) = 10 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8}
{2,3} {3,4} {2,5} {4,6} {2,7} {3,8}
{3,5} {5,6} {3,7} {5,8}
{4,5} {4,5,6} {4,7} {6,8}
{3,4,5} {5,7} {7,8}
{6,7} {3,7,8}
{3,5,7} {5,6,8}
{4,5,7} {5,7,8}
{4,6,7} {6,7,8}
{5,6,7} {5,6,7,8}
{4,5,6,7}
Note that these subsets do not all generate numerical semigroups, as their GCD is unrestricted, cf. A358392. The complement is counted by A365046, first differences of A364914.
(End)

Examples

			a(1) = 1 via <2,3> = {0,2,3,4,...}; the largest missing number is 1.
a(2) = 1 via <3,4,5> = {0,3,4,5,...}; the largest missing number is 2.
a(3) = 2 via <2,5> = {0,2,4,5,...}; and <4,5,6,7> = {0,4,5,6,7,...} where in both the largest missing number is 3.
a(4) = 2 via <3,5,7> = {0,3,5,6,7,...} and <5,6,7,8,9> = {5,6,7,8,9,...} where in both the largest missing number is 4.
		

Crossrefs

Cf. A158206. [From Steven Finch, Mar 13 2009]
A288728 counts sum-free sets, first differences of A007865.
A364350 counts combination-free partitions, complement A364839.

Programs

  • GAP
    The sequence was originally generated by a C program and a Haskell script. The sequence can be obtained by using the function NumericalSemigroupsWithFrobeniusNumber included in the numericalsgps GAP package.

A068911 Number of n-step walks (each step +-1 starting from 0) which are never more than 2 or less than -2.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 108, 162, 324, 486, 972, 1458, 2916, 4374, 8748, 13122, 26244, 39366, 78732, 118098, 236196, 354294, 708588, 1062882, 2125764, 3188646, 6377292, 9565938, 19131876, 28697814, 57395628, 86093442, 172186884, 258280326, 516560652
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Comments

From Johannes W. Meijer, May 29 2010: (Start)
a(n) is the number of ways White can force checkmate in exactly (n+1) moves, n >= 0, ignoring the fifty-move and the triple repetition rules, in the following chess position: White Ka1, Ra8, Bc1, Nb8, pawns a6, a7, b2, c6, d2, f6, g5 and h6; Black Ke8, Nh8, pawns b3, c7, d3, f7, g6 and h7. (After Noam D. Elkies, see link; diagram 5).
Counts all paths of length n, n >= 0, starting at the third node on the path graph P_5, see the Maple program. (End)
From Alec Jones, Feb 25 2016: (Start)
The a(n) are the n-th terms in a "Fibonacci snake" drawn on a rectilinear grid. The n-th term is computed as the sum of the previous terms in cells adjacent to the n-th cell (diagonals included). (This sequence excludes the first term of the snake.)
For example:
1 ... 1 1 ... 1 4 1 4 6 ... 1 4 6 1 4 6 ... and so on.
1 ... 1 2 1 2 ... 1 2 1 2 12 ... 1 2 12 18 (End)
From Gus Wiseman, Oct 06 2023: (Start)
Also the number of subsets of {1..n} containing no two distinct elements summing to n. The a(0) = 1 through a(4) = 12 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,3} {4}
{2,3} {1,2}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{2,3,4}
For n+1 instead of n we have A038754, complement A167762.
Including twins gives A117855, complement A366131.
The complement is counted by A365544.
For all subsets (not just pairs) we have A365377, complement A365376. (End)

Examples

			The a(3) = 6 walks: (0,-1,-2,-1), (0,-1,0,-1), (0,-1,0,1), (0,1,0,-1), (0,1,0,1), (0,1,2,1). - _Gus Wiseman_, Oct 10 2023
		

Crossrefs

Cf. A000007, A016116 (without initial term), A068912, A068913 for similar.
Equals A060647(n-1)+1.
First differences are A117855.

Programs

  • Magma
    [Floor((5-(-1)^n)*3^Floor(n/2)/3): n in [0..40]]; // Bruno Berselli, Feb 26 2016, after Charles R Greathouse IV
    
  • Maple
    with(GraphTheory): G:= PathGraph(5): A:=AdjacencyMatrix(G): nmax:=34; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[3,k], k=1..5) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<2, n+1, (4-irem(n, 2))/2*a(n-1)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 03 2019
  • Mathematica
    Join[{1},Transpose[NestList[{Last[#],3First[#]}&,{2,4},40]][[1]]] (* Harvey P. Dale, Oct 24 2011 *)
    Table[Length[Select[Subsets[Range[n]],FreeQ[Total/@Subsets[#,{2}],n]&]],{n,0,15}] (* Gus Wiseman, Oct 06 2023 *)
  • PARI
    a(n)=[4,6][n%2+1]*3^(n\2)\3 \\ Charles R Greathouse IV, Feb 26 2016
    
  • Python
    def A068911(n): return 3**(n>>1)<<1 if n&1 else (3**(n-1>>1)<<2 if n else 1) # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A068913(2, n) = 2*A038754(n-1) = 3*a(n-2) = a(n-1)*a(n-2)/a(n-3) starting with a(0)=1, a(1)=2, a(2)=4 and a(3)=6.
For n>0: a(2n) = 4*3^(n-1) = 2*a(2n-1); a(2n+1) = 2*3^n = 3*a(2n)/2 = 2*a(2n)-A000079(n-2).
From Paul Barry, Feb 17 2004: (Start)
G.f.: (1+x)^2/(1-3x^2).
a(n) = 2*3^((n+1)/2)*((1-(-1)^n)/6 + sqrt(3)*(1+(-1)^n)/9) - (1/3)*0^n.
The sequence 0, 1, 2, 4, ... has a(n) = 2*3^(n/2)*((1+(-1)^n)/6 + sqrt(3)*(1-(-1)^n)/9) - (2/3)*0^n + (1/3)*Sum_{k=0..n} binomial(n, k)*k*(-1)^k. (End)
a(n) = 2^((3 + (-1)^n)/2)*3^((2*n - 3 - (-1)^n)/4) - ((1 - (-1)^(2^n)))/6. - Luce ETIENNE, Aug 30 2014
For n > 2, indexing from 0, a(n) = a(n-1) + a(n-2) if n is odd, a(n-1) + a(n-2) + a(n-3) if n is even. - Alec Jones, Feb 25 2016
a(n) = 2*a(n-1) if n is even, a(n-1) + a(n-2) if n is odd. - Vincenzo Librandi, Feb 26 2016
E.g.f.: (4*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) - 1)/3. - Stefano Spezia, Feb 17 2022

A088314 Cardinality of set of sets of parts of all partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 30, 37, 51, 61, 79, 96, 124, 148, 186, 222, 275, 326, 400, 473, 575, 673, 811, 946, 1132, 1317, 1558, 1813, 2138, 2463, 2893, 3323, 3882, 4461, 5177, 5917, 6847, 7818, 8994, 10251, 11766, 13334, 15281, 17309, 19732, 22307
Offset: 0

Views

Author

Naohiro Nomoto, Nov 05 2003

Keywords

Comments

Number of different values of A007947(m) when A056239(m) is equal to n.
From Gus Wiseman, Sep 11 2023: (Start)
Also the number of finite sets of positive integers that can be linearly combined using all positive coefficients to obtain n. For example, the a(1) = 1 through a(7) = 12 sets are:
{1} {1} {1} {1} {1} {1} {1}
{2} {3} {2} {5} {2} {7}
{1,2} {4} {1,2} {3} {1,2}
{1,2} {1,3} {6} {1,3}
{1,3} {1,4} {1,2} {1,4}
{2,3} {1,3} {1,5}
{1,4} {1,6}
{1,5} {2,3}
{2,4} {2,5}
{1,2,3} {3,4}
{1,2,3}
{1,2,4}
(End)

Examples

			The 7 partitions of 5 and their sets of parts are
[ #]  partition      set of parts
[ 1]  [ 1 1 1 1 1 ]  {1}
[ 2]  [ 2 1 1 1 ]    {1, 2}
[ 3]  [ 2 2 1 ]      {1, 2}  (same as before)
[ 4]  [ 3 1 1 ]      {1, 3}
[ 5]  [ 3 2 ]        {2, 3}
[ 6]  [ 4 1 ]        {1, 4}
[ 7]  [ 5 ]          {5}
so we have a(5) = |{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {5}}| = 6.
		

Crossrefs

Cf. A182410.
The complement in subsets of {1..n-1} is A070880(n) = A365045(n) - 1.
The case of pairs is A365315, see also A365314, A365320, A365321.
A116861 and A364916 count linear combinations of strict partitions.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364914 and A365046 count combination-full subsets.

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    list2set := L -> {op(L)};
    a:= N -> list2set(map( list2set, combinat[partition](N) ));
    seq(nops(a(n)), n=0..30);
    #  Yogy Namara (yogy.namara(AT)gmail.com), Jan 13 2010
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[],i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=0..40);
    # Alois P. Heinz, Aug 09 2012
  • Mathematica
    Table[Length[Union[Map[Union,IntegerPartitions[n]]]],{n,1,30}] (* Geoffrey Critzer, Feb 19 2013 *)
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i < 1, {},
         Union@Flatten@{b[n, i - 1], Table[If[Head[#] == List,
         Append[#, i]]& /@ b[n - i*j, i - 1], {j, 1, n/i}]}]];
    a[n_] := Length[b[n, n]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,1,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n], UnsameQ@@#&&combp[n,#]!={}&]], {n,0,15}] (* Gus Wiseman, Sep 11 2023 *)
  • Python
    from sympy.utilities.iterables import partitions
    def A088314(n): return len({tuple(sorted(set(p))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023

Formula

a(n) = 2^(n-1) - A070880(n). - Alois P. Heinz, Feb 08 2019
a(n) = A365042(n) + 1. - Gus Wiseman, Sep 13 2023

Extensions

More terms and clearer definition from Vladeta Jovovic, Apr 21 2005

A365046 Number of subsets of {1..n} containing n such that some element can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 1, 2, 6, 11, 28, 53, 118, 235, 490, 973, 2008, 3990, 8089, 16184, 32563, 65071, 130667, 261183, 523388, 1046748, 2095239, 4190208, 8385030, 16768943, 33546257, 67092732, 134201461, 268400553, 536839090, 1073670970, 2147414967, 4294829905, 8589793931
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Includes all subsets containing both 1 and n.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,3,5}
                        {1,3,4}    {1,4,5}
                        {2,3,4}    {2,3,5}
                        {1,2,3,4}  {2,4,5}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is A124506, first differences of A326083.
The binary complement is A288728, first differences of A007865.
First differences of A364914.
The positive version is A365042, first differences of A365043.
The positive complement is counted by A365045, first differences of A365044.
Without re-usable parts we have A365069, first differences of A364534.
The binary version is A365070, first differences of A093971.
A364350 counts combination-free strict partitions, complement A364839.
A085489 and A364755 count subsets without the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Or@@Table[combs[#[[k]],Union[Delete[#,k]]]!={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n+1) = 2^n - A124506(n).

A365073 Number of subsets of {1..n} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 3, 6, 14, 26, 60, 112, 244, 480, 992, 1944, 4048, 7936, 16176, 32320, 65088, 129504, 261248, 520448, 1046208, 2090240, 4186624, 8365696, 16766464, 33503744, 67064064, 134113280, 268347392, 536546816, 1073575936, 2146703360, 4294425600, 8588476416, 17178349568
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2023

Keywords

Examples

			The subset {2,3,6} has 7 = 2*2 + 1*3 + 0*6 so is counted under a(7).
The a(1) = 1 through a(4) = 14 subsets:
  {1}  {1}    {1}      {1}
       {2}    {3}      {2}
       {1,2}  {1,2}    {4}
              {1,3}    {1,2}
              {2,3}    {1,3}
              {1,2,3}  {1,4}
                       {2,3}
                       {2,4}
                       {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A088314.
The case of subsets containing n is A131577.
The binary version is A365314, positive A365315.
The binary complement is A365320, positive A365321.
The positive complement is counted by A365322.
A version for partitions is A365379, strict A365311.
The complement is counted by A365380.
The case of subsets without n is A365542.
A326083 and A124506 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],combs[n,#]!={}&]],{n,0,5}]
  • PARI
    a(n)={
      my(comb(k,b)=while(b>>k, b=bitor(b, b>>k); k*=2); b);
      my(recurse(k,b)=
        if(bittest(b,0), 2^(n+1-k),
        if(2*k>n, 2^(n+1-k) - 2^sum(j=k, n, !bittest(b,j)),
        self()(k+1, b) + self()(k+1, comb(k,b)) )));
      recurse(1, 1<Andrew Howroyd, Sep 04 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 7, 4, 4, 8, 8, 14, 14, 14, 8, 8, 16, 16, 28, 28, 37, 28, 28, 16, 16, 32, 32, 56, 56, 74, 74, 74, 56, 56, 32, 32, 64, 64, 112, 112, 148, 148, 175, 148, 148, 112, 112, 64, 64, 128, 128, 224, 224, 296, 296, 350, 350, 350, 296, 296, 224, 224, 128, 128
Offset: 2

Views

Author

Gus Wiseman, Sep 15 2023

Keywords

Comments

Rows are palindromic.

Examples

			Triangle begins:
    1
    2    2    2
    4    4    7    4    4
    8    8   14   14   14    8    8
   16   16   28   28   37   28   28   16   16
   32   32   56   56   74   74   74   56   56   32   32
Row n = 4 counts the following subsets:
  {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
  {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
  {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
  {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
                        {1,3,4}
                        {2,3,4}
                        {1,2,3,4}
		

Crossrefs

Row lengths are A005408.
The case counting only length-2 subsets is A008967.
Column k = n + 1 appears to be A167762.
The version for all subsets (instead of just pairs) is A365381.
Column k = n is A365544.
A000009 counts subsets summing to n.
A007865/A085489/A151897 count certain types of sum-free subsets.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A093971/A088809/A364534 count certain types of sum-full subsets.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]

A288728 Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1].

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 18, 19, 47, 43, 102, 116, 238, 240, 553, 554, 1185, 1259, 2578, 2607, 5873, 5526, 11834, 12601, 24692, 24390, 53735, 52534, 107445, 107330, 218727, 215607, 461367, 427778, 891039, 910294, 1804606, 1706828, 3695418, 3411513, 7136850, 6892950
Offset: 1

Views

Author

Ben Burns, Jun 14 2017

Keywords

Comments

Using the standard definition of sum-free set, this is simply the difference of successive terms in A007865.
Number of subsets of {1..n} containing n but not containing the sum of any other two elements (repeats allowed). Also the number of sum-free sets (A007865) with maximum n. - Gus Wiseman, Aug 12 2023

Examples

			1 can be added to {};
2 can be added to {} but not {1};
3 can be added to {},{1},{2};
4 can be added to {},{1},{3} but not {2},{1,3},{2,3}.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(1) = 1 through a(7) = 18 sum-free sets with maximum n:
  {1}  {2}  {3}    {4}    {5}      {6}      {7}
            {1,3}  {1,4}  {1,5}    {1,6}    {1,7}
            {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                          {3,5}    {4,6}    {3,7}
                          {4,5}    {5,6}    {4,7}
                          {1,3,5}  {1,4,6}  {5,7}
                          {3,4,5}  {2,5,6}  {6,7}
                                   {4,5,6}  {1,3,7}
                                            {1,4,7}
                                            {1,5,7}
                                            {2,3,7}
                                            {2,6,7}
                                            {3,5,7}
                                            {4,5,7}
                                            {4,6,7}
                                            {5,6,7}
                                            {1,3,5,7}
                                            {4,5,6,7}
(End)
		

Crossrefs

Cf. A007865.
For non-binary sum-free subsets of {1..n} we have A237667.
For sum-free partitions we have A364345, without re-using parts A236912.
Without re-using parts we have A364755, diffs of A085489 (non-bin A151897).
The complement without re-using parts is A364756, differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* Gus Wiseman, Aug 12 2023 *)

Formula

a(n) = A007865(n) - A007865(n-1).

A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 16, 12, 32, 32, 104, 48, 256, 208, 448, 448, 1568, 896, 3840, 2368, 6912, 7680, 22912, 10752, 50688, 44800, 104448, 88064, 324096, 165888, 780288, 541696, 1458176, 1519616, 4044800, 2220032, 10838016, 8744960, 20250624, 16433152, 62267392, 34865152
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8).
The a(1) = 1 through a(8) = 12 subsets:
  {}  {}  {}   {}   {}     {}     {}       {}
          {2}  {3}  {2}    {4}    {2}      {3}
                    {3}    {5}    {3}      {5}
                    {4}    {4,5}  {4}      {6}
                    {2,4}         {5}      {7}
                    {3,4}         {6}      {3,6}
                                  {2,4}    {3,7}
                                  {2,6}    {5,6}
                                  {3,5}    {5,7}
                                  {3,6}    {6,7}
                                  {4,5}    {3,6,7}
                                  {4,6}    {5,6,7}
                                  {5,6}
                                  {2,4,6}
                                  {3,5,6}
                                  {4,5,6}
		

Crossrefs

The complement is counted by A365073, without n A365542.
The binary complement is A365314, positive A365315.
The binary case is A365320, positive A365321.
For positive coefficients we have A365322, complement A088314.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A288728 counts binary sum-free subsets, first differences of A007865.
A365046 counts combination-full subsets, first differences of A364914.
A365071 counts sum-free subsets, first differences of A151897.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}]

Formula

a(n) = 2^n - A365073(n).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A367212 Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2023

Keywords

Comments

Or, partitions whose length is a subset-sum of the parts.

Examples

			The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)       (62)
             (111)  (211)   (221)    (321)     (322)      (332)
                    (1111)  (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
Previous Showing 11-20 of 61 results. Next