cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A093720 Decimal expansion of Sum_{n >= 2} zeta(n)/n!.

Original entry on oeis.org

1, 0, 7, 8, 1, 8, 8, 7, 2, 9, 5, 7, 5, 8, 1, 8, 4, 8, 2, 7, 5, 8, 2, 6, 5, 4, 3, 6, 7, 6, 9, 8, 3, 2, 3, 8, 1, 7, 0, 7, 2, 1, 9, 6, 0, 9, 6, 7, 2, 3, 4, 7, 1, 6, 0, 0, 3, 7, 1, 7, 0, 2, 0, 7, 8, 0, 0, 7, 1, 5, 2, 3, 0, 0, 3, 2, 7, 8, 4, 3, 4, 8, 6, 5, 6, 7, 6, 7, 6, 8, 0, 8, 8, 5, 8, 2, 9, 0, 1
Offset: 1

Views

Author

Eric W. Weisstein, Apr 12 2004

Keywords

Examples

			1.078188729575818482758265436769832381707219...
		

Crossrefs

Programs

  • Maple
    evalf(Sum(exp(1/n)-1-1/n, n=1..infinity), 120); # Vaclav Kotesovec, Mar 04 2016
  • Mathematica
    digits = 99; ClearAll[z, rd]; z[k_] := z[k] = z[k-1] + N[Sum[Zeta[n]/n!, {n, 2^(k-1) + 1, 2^k}], digits]; z[0] = 0; rd[k_] := rd[k] = RealDigits[z[k]][[1]]; rd[0]; rd[k = 1]; While[ rd[k] != rd[k-1], k++]; rd[k] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    suminf(n=2, zeta(n)/n!) \\ Michel Marcus, Mar 15 2017

Formula

Equals Sum_{k>=1} (exp(1/k) - 1 - 1/k). - Vaclav Kotesovec, Mar 04 2016
Equals Integral_{x=0..oo} exp(1/(x^2 + 1))*sin(x/(x^2 + 1))*(coth(Pi*x) - 1) dx + A091725 - 2*A001620 - exp(1)/2 + 3/2. - Velin Yanev, Nov 14 2024

Extensions

Corrected by Fredrik Johansson, Mar 19 2006

A130744 a(n) = n*(n+2)*n!.

Original entry on oeis.org

0, 3, 16, 90, 576, 4200, 34560, 317520, 3225600, 35925120, 435456000, 5708102400, 80472268800, 1214269056000, 19527937228800, 333456963840000, 6025763487744000, 114887039275008000, 2304854534062080000
Offset: 0

Views

Author

Paul Curtz, Jul 12 2007

Keywords

Comments

For n >= 1, a(n) = number whose factorial base representation (A007623) begins with a double digit {n}{n}, which is followed by n-1 zeros. Viewed in that base, this sequence looks like this: 0, 11, 220, 3300, 44000, 550000, 6600000, 77000000, 880000000, 9900000000, AA000000000, BB0000000000, ... (where "digits" A and B stand for placeholder values 10 and 11 respectively). - Antti Karttunen, May 07 2015

Examples

			G.f. = 3*x + 16*x^2 + 90*x^3 + 576*x^4 + 4200*x^5 + 34560*x^6 + ...
		

Crossrefs

Column 3 of A257503 (apart from initial zero. Equally, row 3 of A257505).
Subsequence of both A227130 and A227148.

Programs

Formula

0 = +a(n) * (+a(n+1) + 2*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+1) * (+5*a(n+2) - 6*a(n+3) + a(n+4)) + a(n+2) * (+3*a(n+2) - a(n+4)) + a(n+3) * (+a(n+3)) if n>=0. - Michael Somos, Mar 26 2014
From Antti Karttunen, May 07 2015: (Start)
a(n) = n * (n! + (n+1)!) = n * A001048(n+1).
a(n) = A005563(n) * A000142(n).
a(n) = (n+2)! - (n+1)! - n! [from Orlovsky's Mathematica-code].
(End)
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=1} 1/a(n) = (Ei(1) - gamma)/2 - 1/4, where Ei(1) = A091725 and gamma = A001620.
Sum_{n>=1} (-1)^(n+1)/a(n) = (gamma - Ei(-1))/2 - 1/e + 1/4, where Ei(-1) = -A099285 and e = A001113. (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 05 2008

A001778 Lah numbers: a(n) = n!*binomial(n-1,5)/6!.

Original entry on oeis.org

1, 42, 1176, 28224, 635040, 13970880, 307359360, 6849722880, 155831195520, 3636061228800, 87265469491200, 2157837063782400, 55024845126451200, 1447576694865100800, 39291367432052736000, 1100158288097476608000, 31767070568814637056000
Offset: 6

Views

Author

Keywords

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 6 of A008297.
Column m=6 of unsigned triangle A111596.

Programs

  • Magma
    [Factorial(n-6)*Binomial(n,6)*Binomial(n-1,5): n in [6..30]]; // G. C. Greubel, May 10 2021
  • Maple
    A001778 := proc(n)
        n!*binomial(n-1,5)/6! ;
    end proc:
    seq(A001778(n),n=6..30) ; # R. J. Mathar, Jan 06 2021
  • Mathematica
    With[{c=6!},Table[n!Binomial[n-1,5]/c,{n,6,24}]] (* Harvey P. Dale, May 25 2011 *)
  • Sage
    [binomial(n,6)*factorial(n-1)/factorial(5) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: ((x/(1-x))^6)/6!.
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k) *Stirling2(j,i)*x^(k-j) ) ) then a(n) = (-1)^n*f(n,6,-6), (n>=6). - Milan Janjic, Mar 01 2009
D-finite with recurrence (-n+6)*a(n) +n*(n-1)*a(n-1)=0. - R. J. Mathar, Jan 06 2021
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=6} 1/a(n) = 570*(gamma - Ei(1)) + 1380*e - 2999, where gamma = A001620, Ei(1) = A091725 and e = A001113.
Sum_{n>=6} (-1)^n/a(n) = 15030*(gamma - Ei(-1)) - 9000/e - 8661, where Ei(-1) = -A099285. (End)

Extensions

More terms from Christian G. Bower, Dec 18 2001

A001811 Coefficients of Laguerre polynomials.

Original entry on oeis.org

1, 25, 450, 7350, 117600, 1905120, 31752000, 548856000, 9879408000, 185513328000, 3636061228800, 74373979680000, 1586644899840000, 35272336619520000, 816302647480320000, 19645683716026368000, 491142092900659200000, 12740803704070041600000
Offset: 4

Views

Author

Keywords

Examples

			G.f. = x^4 + 25*x^5 + 450*x^6 + 7350*x^7 + 117600*x^8 + 1905120*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, labeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..19) ; # Zerinvary Lajos, Feb 07 2008
  • Mathematica
    Table[n! n (n - 1) (n - 2) (n - 3)/(4!)^2, {n, 4, 20}] (* T. D. Noe, Aug 10 2012 *)
  • Sage
    [factorial(m) * binomial(m, 4) / 24 for m in range(4,19)] # Zerinvary Lajos, Jul 05 2008

Formula

a(n) = n!*n*(n-1)(n-2)(n-3)/(4!)^2. a(4)=1, a(n+1) = a(n) * (n+1)^2 / (n-3).
a(n) = A021009(n, 4), n >= 4.
E.g.f.: x^4/(4!*(1-x)^5).
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n) = (-1)^n*f(n,4,-5), (n >= 4). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 64*(Ei(1) - gamma - e) + 272/3, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=4} (-1)^n/a(n) = 544*(gamma - Ei(-1)) - 320/e - 944/3, where Ei(-1) = -A099285. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Corrected by T. D. Noe, Aug 10 2012

A052520 Number of pairs of sequences of cardinality at least 2.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 2160, 20160, 201600, 2177280, 25401600, 319334400, 4311014400, 62270208000, 958961203200, 15692092416000, 271996268544000, 4979623993344000, 96035605585920000, 1946321606541312000, 41359334139002880000, 919636959090769920000, 21356013827774545920000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0], List([4..20], n-> (n-3)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 3 select 0 else (n-3)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[Sum[n!, {i,4,n}], {n, 0, 19}] (* Zerinvary Lajos, Jul 12 2009 *)
    With[{nn=20},CoefficientList[Series[x^4/(x-1)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 03 2016 *)
  • PARI
    {a(n) = if(n<4, 0, (n-3)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0]+[(n-3)*factorial(n) for n in (4..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^4/(1-x)^2.
(n-3)*a(n+1) + (2+n-n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = 0, a(4) = 24.
a(n) = (n-3)*n!, n>2.
a(n) = (n+1)!*(n-3)/(n+1), n>2. - Gary Detlefs, Oct 02 2011
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=4} 1/a(n) = 59/36 - 2*e/3 - gamma/6 + Ei(1)/6 = 59/36 - (2/3)*A001113 - (1/6)*A001620 + A091725/2.
Sum_{n>=4} (-1)^n/a(n) = 1/36 - 1/(3*e) + gamma/6 - Ei(-1)/6 = 1/36 - (1/3)*A068985 + (1/6)*A001620 + (1/6)*A099285. (End)

A062193 Fourth (unsigned) column sequence of triangle A062139 (generalized a=2 Laguerre).

Original entry on oeis.org

1, 24, 420, 6720, 105840, 1693440, 27941760, 479001600, 8562153600, 159826867200, 3116623910400, 63465795993600, 1348648164864000, 29877743960064000, 689322235650048000, 16543733655601152000, 412559358036553728000, 10678006913887272960000, 286526518855975157760000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+3)*binomial(n+5, 5)/Factorial(3): n in [0..30]]; // G. C. Greubel, May 11 2018
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1+15*x+30*x^2+10*x^3)/(1-x)^9, {x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    { f=2; for (n=0, 100, f*=n + 3; write("b062193.txt", n, " ", f*binomial(n + 5, 5)/6) ) } \\ Harry J. Smith, Aug 02 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((1+15*x+30*x^2+10*x^3)/(1-x)^9)) \\ G. C. Greubel, May 11 2018
    
  • Sage
    [binomial(n,5)*factorial (n-2)/6 for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: (1+15*x+30*x^2+10*x^3)/(1-x)^9.
a(n) = A062139(n+3, 3).
a(n) = (n+3)!*binomial(n+5, 5)/3!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n-3) = (-1)^(n-1)*f(n,3,-6), (n>=3). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 75*(Ei(1) - gamma) - 30*e - 65/4, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=0} (-1)^n/a(n) = 315*(gamma - Ei(-1)) - 180/e - 735/4, where Ei(-1) = -A099285. (End)

A111597 Lah numbers: a(n) = n!*binomial(n-1,6)/7!.

Original entry on oeis.org

1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 779155977600, 20777492736000, 565147802419200, 15721384321843200, 448059453172531200, 13097122477350912000, 392913674320527360000, 12101741169072242688000
Offset: 7

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.

Crossrefs

Column 7 of A008297 and unsigned A111596.
Column 6 of A001778.

Programs

  • Magma
    [Factorial(n-7)*Binomial(n, 7)*Binomial(n-1, 6): n in [7..30]]; // G. C. Greubel, May 10 2021
    
  • Mathematica
    k = 7; a[n_] := n!*Binomial[n-1, k-1]/k!; Table[a[n], {n, k, 22}]  (* Jean-François Alcover, Jul 09 2013 *)
  • Sage
    [factorial(n-7)*binomial(n, 7)*binomial(n-1, 6) for n in (7..30)] # G. C. Greubel, May 10 2021

Formula

E.g.f.: ((x/(1-x))^7)/7!.
a(n) = (n!/7!)*binomial(n-1, 7-1).
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n+1) = (-1)^n*f(n,6,-8), (n>=6). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=7} 1/a(n) = 6342*(Ei(1) - gamma) - 8988*e + 80374/5, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=7} (-1)^(n+1)/a(n) = 170142*(gamma - Ei(-1)) - 101640/e - 490714/5, where Ei(-1) = -A099285. (End)

A208528 Number of permutations of n>1 having exactly 3 points P on the boundary of their bounding square.

Original entry on oeis.org

0, 4, 16, 72, 384, 2400, 17280, 141120, 1290240, 13063680, 145152000, 1756339200, 22992076800, 323805081600, 4881984307200, 78460462080000, 1339058552832000, 24186745110528000, 460970906812416000, 9245027631071232000, 194632160654131200000
Offset: 2

Views

Author

David Nacin, Feb 27 2012

Keywords

Comments

A bounding square for a permutation of n is the square with sides parallel to the coordinate axis containing (1,1) and (n,n), and the set of points P of a permutation p is the set {(k,p(k)) for 0
a(n) is the number of permutations of n symbols that 3-commute with a transposition (see A233440 for definition): a permutation p of {1,...,n} has exactly three points on the boundary of their bounding square if and only if p 3-commutes with transposition (1, n). - Luis Manuel Rivera Martínez, Feb 27 2014

Examples

			a(3) = 4 because {(1,1),(2,3),(3,2)}, {(1,3),(2,1),(3,2)}, {(1,2),(2,3),(3,1)} and {(1,2),(2,1),(3,3)} each have three points on the bounding square.
		

Crossrefs

Programs

  • Mathematica
    Table[(4n-8)(n-2)!, {n, 2, 10}]
  • Python
    import math
    def a(n):
        return (4*n-8)*math.factorial(n-2)

Formula

a(n) = (4*n-8) * (n-2)!
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=3} 1/a(n) = (Ei(1) - gamma)/4, where Ei(1) = A091725 and gamma = A001620.
Sum_{n>=3} (-1)^(n+1)/a(n) = (gamma - Ei(-1))/4, where Ei(-1) = -A099285. (End)

A001812 Coefficients of Laguerre polynomials.

Original entry on oeis.org

1, 36, 882, 18816, 381024, 7620480, 153679680, 3161410560, 66784798080, 1454424491520, 32724551059200, 761589551923200, 18341615042150400, 457129482588979200, 11787410229615820800, 314330939456421888000, 8663746518767628288000, 246661959710796005376000
Offset: 5

Keywords

Examples

			G.f. = x^5 + 36*x^6 + 882*x^7 + 18816*x^8 + 381024*x^9 + 7620480*x^10 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 519.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [((Factorial(n)/Factorial(5))^2)/Factorial(n-5): n in [5..20]]; // G. C. Greubel, May 11 2018
  • Mathematica
    Table[((n!/5!)^2)/(n-5)!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    for(n=5,20, print1(((n!/5!)^2)/(n-5)!, ", ")) \\ G. C. Greubel, May 11 2018
    
  • Sage
    [factorial(m) * binomial(m, 5) / 120 for m in range(5,23)] # Zerinvary Lajos, Jul 05 2008
    

Formula

a(n) = (-1)*A021009(n, 5), n >= 5.
a(n) = ((n!/5!)^2)/(n-5)!, n >= 5.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n) = (-1)^(n-1)*f(n,5,-6), (n>=5). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=5} 1/a(n) = 375*(gamma - Ei(1)) + 150*e + 175/2, where e = A001113, gamma = A001620, and Ei(1) = A091725.
Sum_{n>=5} (-1)^(n+1)/a(n) = 5225*(gamma - Ei(-1)) - 3100/e - 18125/6, where Ei(-1) = -A099285. (End)

A052521 Number of pairs of sequences of cardinality at least 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 120960, 1451520, 18144000, 239500800, 3353011200, 49816166400, 784604620800, 13076743680000, 230150688768000, 4268249137152000, 83230858174464000, 1703031405723648000
Offset: 0

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. sequences with formula (n + k)*n! listed in A282466.

Programs

  • GAP
    Concatenation([0,0,0,0,0,0], List([6..20], n-> (n-5)*Factorial(n))); # G. C. Greubel, May 13 2019
  • Magma
    [n le 5 select 0 else (n-5)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{B=Sequence(Z,3 <= card), S=Prod(B,B)},labeled]: # Pairs spec
    seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    Table[If[n<6, 0, (n-5)*n!], {n,0,20}] (* G. C. Greubel, May 13 2019 *)
  • PARI
    {a(n) = if(n<6, 0, (n-5)*n!)}; \\ G. C. Greubel, May 13 2019
    
  • Sage
    [0,0,0,0,0,0]+[(n-5)*factorial(n) for n in (6..20)] # G. C. Greubel, May 13 2019
    

Formula

E.g.f.: x^6/(1-x)^2.
(n-5)*a(n+1) + (4 + 3*n - n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 0, a(6) = 720.
a(n) = (n-5)*n!.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=6} 1/a(n) = 5477/7200 - 17*e/60 - gamma/120 + Ei(1)/120 = 5477/7200 - (17/60)*A001113 - (1/120)*A001620 + A091725/120.
Sum_{n>=6} (-1)^n/a(n) = 403/7200 - 1/(6*e) + gamma/120 - Ei(-1)/120 = 403/7200 - (1/6)*A068985 + (1/120)*A001620 + (1/120)*A099285. (End)
Previous Showing 21-30 of 47 results. Next