A154879
Third differences of the Jacobsthal sequence A001045.
Original entry on oeis.org
3, -2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528, 5726623064
Offset: 0
-
[(1/3)*(8*(-1)^n+2^n): n in [0..35]]; // Vincenzo Librandi, Jul 24 2011
-
Differences[LinearRecurrence[{1,2},{0,1},40],3] (* or *) LinearRecurrence[ {1,2},{3,-2},40] (* Harvey P. Dale, Apr 20 2018 *)
-
def A154879(n): return ((1<2 else (3,-2,4)[n] # Chai Wah Wu, Apr 18 2025
Typo in A-number in formula corrected by
R. J. Mathar, Feb 23 2009
A015585
a(n) = 9*a(n-1) + 10*a(n-2).
Original entry on oeis.org
0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (9,10).
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[Round(10^n/11): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
k=0;lst={k};Do[k=10^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
LinearRecurrence[{9,10},{0,1},30] (* Harvey P. Dale, Aug 08 2014 *)
-
a(n)=10^n\/11 \\ Charles R Greathouse IV, Jun 24 2011
-
[lucas_number1(n,9,-10) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
-
[abs(gaussian_binomial(n,1,-10)) for n in range(0,19)] # Zerinvary Lajos, May 28 2009
A109501
Number of closed walks of length n on the complete graph on 7 nodes from a given node.
Original entry on oeis.org
1, 0, 6, 30, 186, 1110, 6666, 39990, 239946, 1439670, 8638026, 51828150, 310968906, 1865813430, 11194880586, 67169283510, 403015701066, 2418094206390, 14508565238346, 87051391430070, 522308348580426, 3133850091482550, 18803100548895306, 112818603293371830
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Christopher R. Kitching, Henri Kauhanen, Jordan Abbott, Deepthi Gopal, Ricardo Bermúdez-Otero, and Tobias Galla, Estimating transmission noise on networks from stationary local order, arXiv:2405.12023 [cond-mat.stat-mech], 2024. See p. 48.
- Index entries for linear recurrences with constant coefficients, signature (5,6).
Cf. sequences with the same recurrence form:
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A015540. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(6^n + 6*(-1)^n)/7: n in [0..30]]; // G. C. Greubel, Dec 30 2017
-
k=0;lst={k};Do[k=6^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[(1 - 5*x)/(1 - 5*x - 6*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{5,6}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
for(n=0,30, print1((6^n + 6*(-1)^n)/7, ", ")) \\ G. C. Greubel, Dec 30 2017
A015577
a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (8,9).
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[Round(9^n/10): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(9^n/10),n=0..25); # Mircea Merca, Dec 28 2010
-
k=0;lst={k};Do[k=9^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[(9^n - (-1)^n)/10, {n,0,30}] (* or *) LinearRecurrence[{8,9}, {0,1}, 30] (* G. C. Greubel, Jan 06 2018 *)
-
a[0]:0$
a[n]:=9^(n-1)-a[n-1]$
A015577(n):=a[n]$
makelist(A015577(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
A015577_vec(N=20)=Vec(O(x^N)+1/(1-8*x-9*x^2), -N-1) \\ M. F. Hasler, Jun 14 2008, edited Oct 25 2019
-
for(n=0,30, print1((9^n - (-1)^n)/10, ", ")) \\ G. C. Greubel, Jan 06 2018
-
apply( {A015577(n)=9^n\/10}, [0..25]) \\ M. F. Hasler, Oct 25 2019
-
[lucas_number1(n,8,-9) for n in range(0, 19)] # Zerinvary Lajos, Apr 25 2009
A093134
A Jacobsthal trisection.
Original entry on oeis.org
1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
Offset: 0
Other sequences with a(n+1) = 8^n - a(n) are
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A015565. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
k=0;lst={1, k};Do[k=8^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
Table[(8^n + 8*(-1)^n)/9, {n,0,30}] (* or *) LinearRecurrence[{7,8}, {1,0}, 30] (* G. C. Greubel, Jan 06 2018 *)
-
for(n=0,30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018
A097074
Expansion of (1-x+2*x^2)/((1-x)*(1-x-2*x^2)).
Original entry on oeis.org
1, 1, 5, 9, 21, 41, 85, 169, 341, 681, 1365, 2729, 5461, 10921, 21845, 43689, 87381, 174761, 349525, 699049, 1398101, 2796201, 5592405, 11184809, 22369621, 44739241, 89478485, 178956969, 357913941, 715827881, 1431655765, 2863311529
Offset: 0
-
[(2^(n+2) +2*(-1)^n -3)/3: n in [0..40]]; // G. C. Greubel, Aug 18 2022
-
CoefficientList[Series[(1-x+2x^2)/((1-x)(1-x-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{1,1,5},40] (* Harvey P. Dale, Apr 09 2018 *)
-
[(2^(n+2) +2*(-1)^n -3)/3 for n in (0..40)] # G. C. Greubel, Aug 18 2022
Correction of the homogeneous recurrence and index link added by
Wolfdieter Lang, Nov 16 2013
A228053
A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1.
Original entry on oeis.org
-1, 1, 1, -1, 2, -1, 1, 1, 1, 1, -1, 2, 2, 2, -1, 1, 1, 4, 4, 1, 1, -1, 2, 5, 8, 5, 2, -1, 1, 1, 7, 13, 13, 7, 1, 1, -1, 2, 8, 20, 26, 20, 8, 2, -1, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1, 1, 1, 13, 49, 112, 166, 166, 112
Offset: 0
Triangle begins:
-1,
1, 1,
-1, 2, -1,
1, 1, 1, 1,
-1, 2, 2, 2, -1,
1, 1, 4, 4, 1, 1,
-1, 2, 5, 8, 5, 2, -1,
1, 1, 7, 13, 13, 7, 1, 1,
-1, 2, 8, 20, 26, 20, 8, 2, -1,
1, 1, 10, 28, 46, 46, 28, 10, 1, 1,
-1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1
-
a228053 n k = a228053_tabl !! n !! k
a228053_row n = a228053_tabl !! n
a228053_tabl = iterate (\row@(i:_) -> zipWith (+)
([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1]
-- Reinhard Zumkeller, Aug 08 2013
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
A015592
a(n) = 10*a(n-1) + 11*a(n-2).
Original entry on oeis.org
0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[-(1/12)*(-1)^n+(1/12)*11^n: n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
k=0;lst={k};Do[k=11^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
-
[lucas_number1(n,10,-11) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
A140360
Inverse binomial transform of A140359.
Original entry on oeis.org
1, 0, 5, -5, 15, -25, 55, -105, 215, -425, 855, -1705, 3415, -6825, 13655, -27305, 54615, -109225, 218455, -436905, 873815, -1747625, 3495255, -6990505, 13981015, -27962025, 55924055, -111848105, 223696215, -447392425, 894784855, -1789569705, 3579139415
Offset: 0
-
a:= n-> `if`(n=0, 1, (<<0|1>, <2|-1>>^(n-1). <<0,5>>)[1,1]):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2010
-
{1}~Join~Table[(-5 (-1 + (-2)^(n - 1)))/3, {n, 32}] (* or *)
CoefficientList[Series[(-3 x^2 - x - 1)/(2 x^2 - x - 1), {x, 0, 32}], x] (* Michael De Vlieger, Apr 15 2016 *)
A015609
a(n) = 11*a(n-1) + 12*a(n-2).
Original entry on oeis.org
0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585,
A015592. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
-
[lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
-
[abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
Comments