cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A154879 Third differences of the Jacobsthal sequence A001045.

Original entry on oeis.org

3, -2, 4, 0, 8, 8, 24, 40, 88, 168, 344, 680, 1368, 2728, 5464, 10920, 21848, 43688, 87384, 174760, 349528, 699048, 1398104, 2796200, 5592408, 11184808, 22369624, 44739240, 89478488, 178956968, 357913944, 715827880, 1431655768, 2863311528, 5726623064
Offset: 0

Views

Author

Paul Curtz, Jan 16 2009

Keywords

Comments

Second differences of A078008. First differences of the sequence (-1)^(n+1)*A084247(n).

Crossrefs

Cf. A115341.

Programs

  • Magma
    [(1/3)*(8*(-1)^n+2^n): n in [0..35]]; // Vincenzo Librandi, Jul 24 2011
    
  • Mathematica
    Differences[LinearRecurrence[{1,2},{0,1},40],3] (* or *) LinearRecurrence[ {1,2},{3,-2},40] (* Harvey P. Dale, Apr 20 2018 *)
  • Python
    def A154879(n): return ((1<2 else (3,-2,4)[n] # Chai Wah Wu, Apr 18 2025

Formula

a(n) + a(n+1) = A000079(n), n > 1.
a(n+3) = 8*A001045(n) = 4*A078008(n+1) = 2*A097073(n+1).
From R. J. Mathar, Jan 23 2009: (Start)
a(n) = a(n-1) + 2*a(n-2).
G.f.: (3-5*x)/((1+x)*(1-2*x)). (End)

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009
Typo in A-number in formula corrected by R. J. Mathar, Feb 23 2009

A015585 a(n) = 9*a(n-1) + 10*a(n-2).

Original entry on oeis.org

0, 1, 9, 91, 909, 9091, 90909, 909091, 9090909, 90909091, 909090909, 9090909091, 90909090909, 909090909091, 9090909090909, 90909090909091, 909090909090909, 9090909090909091, 90909090909090909, 909090909090909091, 9090909090909090909, 90909090909090909091
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_11. Example: a(2)=9 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJK are: ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB and AKB. - Emeric Deutsch, Apr 01 2004
Beginning with n=1 and a(1)=1, these are the positive integers whose balanced base-10 representations (A097150) are the first n digits of 1,-1,1,-1,.... Also, a(n) = (-1)^(n-1)*A014992(n) = |A014992(n)| for n >= 1. - Rick L. Shepherd, Jul 30 2004

Crossrefs

Programs

Formula

a(n) = 9*a(n-1) + 10*a(n-2).
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 10^(n-1) - a(n-1).
G.f.: x/(1 - 9x - 10x^2). (End)
From Henry Bottomley, Sep 17 2004: (Start)
a(n) = round(10^n/11).
a(n) = (10^n - (-1)^n)/11.
a(n) = A098611(n)/11 = 9*A094028(n+1)/A098610(n). (End)
E.g.f.: exp(-x)*(exp(11*x) - 1)/11. - Elmo R. Oliveira, Aug 17 2024

Extensions

Extended by T. D. Noe, May 23 2011

A109501 Number of closed walks of length n on the complete graph on 7 nodes from a given node.

Original entry on oeis.org

1, 0, 6, 30, 186, 1110, 6666, 39990, 239946, 1439670, 8638026, 51828150, 310968906, 1865813430, 11194880586, 67169283510, 403015701066, 2418094206390, 14508565238346, 87051391430070, 522308348580426, 3133850091482550, 18803100548895306, 112818603293371830
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A109502.
Cf. sequences with the same recurrence form: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A015540. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008

Programs

  • Magma
    [(6^n + 6*(-1)^n)/7: n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    k=0;lst={k};Do[k=6^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    CoefficientList[Series[(1 - 5*x)/(1 - 5*x - 6*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{5,6}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=0,30, print1((6^n + 6*(-1)^n)/7, ", ")) \\ G. C. Greubel, Dec 30 2017
    

Formula

G.f.: (1 - 5*x)/(1 - 5*x - 6*x^2).
a(n) = (6^n + 6*(-1)^n)/7.
a(n) = 6^(n-1) - a(n-1), a(0) = 1. - Jon E. Schoenfield, Feb 09 2015
a(n) = 5*a(n-1) + 6*a(n-2). - G. C. Greubel, Dec 30 2017
E.g.f.: exp(-x)*(exp(7*x) + 6)/7. - Elmo R. Oliveira, Aug 17 2024

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006
Edited by Jon E. Schoenfield, Feb 09 2015

A015577 a(n+1) = 8*a(n) + 9*a(n-1), a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 8, 73, 656, 5905, 53144, 478297, 4304672, 38742049, 348678440, 3138105961, 28242953648, 254186582833, 2287679245496, 20589113209465, 185302018885184, 1667718169966657, 15009463529699912, 135085171767299209, 1215766545905692880, 10941898913151235921
Offset: 0

Views

Author

Keywords

Comments

Binomial transform is A011557, with a leading zero. - Paul Barry, Jul 09 2003
Number of walks of length n between any two distinct nodes of the complete graph K_10. Example: a(2) = 8 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJ are: ACB, ADB, AEB, AFB, AGB, AHB, AIB and AJB. - Emeric Deutsch, Apr 01 2004
The ratio a(n+1)/a(n) converges to 9 as n approaches infinity. - Felix P. Muga II, Mar 09 2014

Crossrefs

Programs

Formula

From Paul Barry, Jul 09 2003: (Start)
G.f.: x/((1+x)*(1-9*x)).
E.g.f. exp(4*x)*sinh(5*x)/5.
a(n) = (9^n - (-1)^n)/10. (End)
a(n) = 9^(n-1)-a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = round(9^n/10). - Mircea Merca, Dec 28 2010

Extensions

Extended by T. D. Noe, May 23 2011

A093134 A Jacobsthal trisection.

Original entry on oeis.org

1, 0, 8, 56, 456, 3640, 29128, 233016, 1864136, 14913080, 119304648, 954437176, 7635497416, 61083979320, 488671834568, 3909374676536, 31274997412296, 250199979298360, 2001599834386888, 16012798675095096, 128102389400760776, 1024819115206086200, 8198552921648689608
Offset: 0

Views

Author

Paul Barry, Mar 23 2004

Keywords

Comments

Counts closed walks at a vertex of the complete graph on 9 nodes K_9.
Second binomial transform is A047855.

Crossrefs

Other sequences with a(n+1) = 8^n - a(n) are A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499, A015531, A109500, A109501, A015552, A015565. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Cf. A047855.

Programs

  • Magma
    [(8^n/9+8*(-1)^n/9): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    k=0;lst={1, k};Do[k=8^n-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[(8^n + 8*(-1)^n)/9, {n,0,30}] (* or *) LinearRecurrence[{7,8}, {1,0}, 30] (* G. C. Greubel, Jan 06 2018 *)
  • PARI
    for(n=0,30, print1((8^n + 8*(-1)^n)/9, ", ")) \\ G. C. Greubel, Jan 06 2018

Formula

G.f.: (1-7*x)/(1 - 7*x - 8*x^2).
a(n) = (8^n + 8*(-1)^n)/9.
a(n) = 8*A001045(3*n-3)/3.
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(-x)*(exp(9*x) + 8)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)

A097074 Expansion of (1-x+2*x^2)/((1-x)*(1-x-2*x^2)).

Original entry on oeis.org

1, 1, 5, 9, 21, 41, 85, 169, 341, 681, 1365, 2729, 5461, 10921, 21845, 43689, 87381, 174761, 349525, 699049, 1398101, 2796201, 5592405, 11184809, 22369621, 44739241, 89478485, 178956969, 357913941, 715827881, 1431655765, 2863311529
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums of A097073.
This is the sequence A(1,1;1,2;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. [Wolfdieter Lang, Oct 18 2010]

Crossrefs

Programs

  • Magma
    [(2^(n+2) +2*(-1)^n -3)/3: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[(1-x+2x^2)/((1-x)(1-x-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{1,1,5},40] (* Harvey P. Dale, Apr 09 2018 *)
  • SageMath
    [(2^(n+2) +2*(-1)^n -3)/3 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 2*A001045(n+1) - 1.
a(n) = (2^(n+2) + 2*(-1)^n - 3)/3.
From Wolfdieter Lang, Oct 18 2010: (Start)
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=1, a(1)=1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), a(0)=1=a(1), a(2)=5. Observed by G. Detlefs. See the W. Lang link. (End)
a(n) = 3*a(n-1) - 2*a(n-2) + 4*(-1)^n. - Gary Detlefs, Dec 19 2010
a(n) = A000975(n+1) - A000975(n) + 2*A000975(n-1). - R. J. Mathar, Feb 27 2019
E.g.f.: (1/3)*(2*exp(-x) - 3*exp(x) + 4*exp(2*x)). - G. C. Greubel, Aug 18 2022

Extensions

Correction of the homogeneous recurrence and index link added by Wolfdieter Lang, Nov 16 2013

A228053 A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1.

Original entry on oeis.org

-1, 1, 1, -1, 2, -1, 1, 1, 1, 1, -1, 2, 2, 2, -1, 1, 1, 4, 4, 1, 1, -1, 2, 5, 8, 5, 2, -1, 1, 1, 7, 13, 13, 7, 1, 1, -1, 2, 8, 20, 26, 20, 8, 2, -1, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1, 1, 1, 13, 49, 112, 166, 166, 112
Offset: 0

Views

Author

T. D. Noe, Aug 07 2013

Keywords

Comments

This sequence is almost the same as A026637.
T(n,k) = A026637(n-2,k-1) for n > 3, 1 < k < n-1. - Reinhard Zumkeller, Aug 08 2013

Examples

			Triangle begins:
  -1,
  1, 1,
  -1, 2, -1,
  1, 1, 1, 1,
  -1, 2, 2, 2, -1,
  1, 1, 4, 4, 1, 1,
  -1, 2, 5, 8, 5, 2, -1,
  1, 1, 7, 13, 13, 7, 1, 1,
  -1, 2, 8, 20, 26, 20, 8, 2, -1,
  1, 1, 10, 28, 46, 46, 28, 10, 1, 1,
  -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1
		

Crossrefs

Cf. A007318 (Pascal's triangle), A026637 (many terms in common).
Cf. A051601 (n on the borders), A137688 (2^n on borders).
Cf. A097073 (row sums).
Cf. A227074 (4^n edges), A227075 (3^n edges), A227076 (5^n edges).

Programs

  • Haskell
    a228053 n k = a228053_tabl !! n !! k
    a228053_row n = a228053_tabl !! n
    a228053_tabl = iterate (\row@(i:_) -> zipWith (+)
       ([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1]
      -- Reinhard Zumkeller, Aug 08 2013
  • Mathematica
    t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A140360 Inverse binomial transform of A140359.

Original entry on oeis.org

1, 0, 5, -5, 15, -25, 55, -105, 215, -425, 855, -1705, 3415, -6825, 13655, -27305, 54615, -109225, 218455, -436905, 873815, -1747625, 3495255, -6990505, 13981015, -27962025, 55924055, -111848105, 223696215, -447392425, 894784855, -1789569705, 3579139415
Offset: 0

Views

Author

Paul Curtz, Jun 24 2008

Keywords

Comments

For p*Jacobsthal numbers A001045, p=2: A078008 (A001045 differences, they are companions) or 1, 2*A001045(n), also in A133494; p=3: A062510; p=4: see A097073; p=6: A092297.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, (<<0|1>, <2|-1>>^(n-1). <<0,5>>)[1,1]):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 28 2010
  • Mathematica
    {1}~Join~Table[(-5 (-1 + (-2)^(n - 1)))/3, {n, 32}] (* or *)
    CoefficientList[Series[(-3 x^2 - x - 1)/(2 x^2 - x - 1), {x, 0, 32}], x] (* Michael De Vlieger, Apr 15 2016 *)

Formula

G.f.: (-3*x^2-x-1) / (2*x^2-x-1).
a(n) = (-5*(-1 + (-2)^(n-1)))/3, for n>0. - Andres Cicuttin, Apr 15 2016
a(n) = 5 - 2*a(n-1), for n>2. - Andres Cicuttin, Apr 15 2016

Extensions

More terms from Alois P. Heinz, Dec 28 2010

A015609 a(n) = 11*a(n-1) + 12*a(n-2).

Original entry on oeis.org

0, 1, 11, 133, 1595, 19141, 229691, 2756293, 33075515, 396906181, 4762874171, 57154490053, 685853880635, 8230246567621, 98762958811451, 1185155505737413, 14221866068848955, 170662392826187461
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_13. Example: a(2)=11 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKLM are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB, ALB and AMB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

  • Magma
    [(1/13)*(12^n-(-1)^n): n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
    
  • Mathematica
    CoefficientList[Series[x/(1-11*x-12*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{11,12}, {0,1}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x-12*x^2))) \\ G. C. Greubel, Dec 30 2017
  • Sage
    [lucas_number1(n,11,-12) for n in range(0, 18)] # Zerinvary Lajos, Apr 27 2009
    
  • Sage
    [abs(gaussian_binomial(n,1,-12)) for n in range(0,18)] # Zerinvary Lajos, May 28 2009
    

Formula

From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 12^(n-1) - a(n-1).
G.f.: x/(1 - 11*x - 12*x^2). (End)
E.g.f.: exp(-x)*(exp(13*x) - 1)/13. - Stefano Spezia, Mar 11 2020
Previous Showing 11-20 of 24 results. Next