cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A000542 Sum of 8th powers: 1^8 + 2^8 + ... + n^8.

Original entry on oeis.org

0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 67731333, 167731333, 382090214, 812071910, 1627802631, 3103591687, 5666482312, 9961449608, 16937207049, 27957167625, 44940730666, 70540730666, 108363590027, 163239463563, 241550448844
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 8 of array A103438.
Cf. A069093.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^8 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^8;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^8, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    s = 0; lst = {s}; Do[s += n^8; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
    Accumulate[Range[0,30]^8] (* Harvey P. Dale, Jun 17 2015 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(5*n^6+15*n^5+5*n^4-15*n^3-n^2+9*n-3)/90 \\ Charles R Greathouse IV, Sep 28 2015
  • Python
    A000542_list, m = [0], [40320, -141120, 191520, -126000, 40824, -5796, 254, -1, 0, 0]
    for _ in range(24):
        for i in range(9):
            m[i+1] += m[i]
        A000542_list.append(m[-1])
    print(A000542_list) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,9)/9 for n in range(1, 25)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)*(5*n^6 + 15*n^5 + 5*n^4 - 15*n^3 - n^2 + 9*n - 3)/90.
a(n) = n*A000541(n) - Sum_{i=0..n-1} A000541(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(x+1)*(x^6 + 246*x^5 + 4047*x^4 + 11572*x^3 + 4047*x^2 + 246*x + 1)/(x-1)^10. - Colin Barker, May 27 2012
a(n) = 9*a(n-1) - 36* a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) + 40320. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..8} j*Stirling1(n+1,n+1-j)*Stirling2(n+8-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i = 1..n} J_8(i)*floor(n/i), where J_8 is A069093. - Ridouane Oudra, Jul 17 2025

A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.

Original entry on oeis.org

1, 2, -3, 3, -12, 11, 4, -30, 70, -50, 5, -60, 255, -450, 274, 6, -105, 700, -2205, 3248, -1764, 7, -168, 1610, -7840, 20307, -26264, 13068, 8, -252, 3276, -22680, 89796, -201852, 236248, -109584, 9, -360, 6090, -56700, 316365, -1077300, 2171040, -2345400, 1026576, 10, -495, 10560, -127050, 946638, -4510275, 13667720, -25228500, 25507152, -10628640
Offset: 1

Views

Author

Wolfdieter Lang, Oct 10 2011

Keywords

Comments

The k-th power of the positive integers has partial sums Sum_{j=1..n} j^k given as column number n >= 1, in the array A103438 (not in the triangle; see the example array given there; note that 0^0 has been set to 0 there).
The o.g.f. of column number n >= 1 of the array A103438 is obtained via Laplace transformation from the e.g.f. which is given there as
exp(x)*(exp(n*x)-1)/(exp(x)-1) = Sum_{j=1..n} exp(j*x)
(it is trivial that the sum is the e.g.f.).
The o.g.f. is, therefore, Sum_{j=1..n} 1/(1-j*x), which is rewritten as P(n,x)/Product_{j=1..n} (1-j*x). This defines the row polynomials P(n,x) of the present triangle. See the link for details.
This e.g.f. - o.g.f. connection proves some conjectures by Simon Plouffe. See the o.g.f. Maple programs under, e.g., A001551(n=4) and A001552 (n=5).
This triangle organizes the sum of powers of the first n positive integers in terms of the column no. n of the Stirling2 numbers A048993 (see the formula and example given below, as well as the link).
From Wolfdieter Lang, Oct 12 2011: (Start)
With the formulas given below one finds for n >= 1, k >= 0, Sum_{j=1..n} j^k =
Sum_{m=0..min(k,n-1)} ((n-m)*S1(n+1, n-m+1)*S2(k+n-m, n)),
with the Stirling numbers S1 from A048994 and S2 from A048993 (this formula I did not (yet) find in the literature). See the link for the proof.
For two other formulas expressing these sums of k-th powers of the first n positive integers in terms of the row no. k of Stirling2 numbers and binomials in n see the D. E. Knuth reference given under A093556, p. 285.
See also the given link below, eqs. (11) and (12). (End)

Examples

			n\m  0    1    2     3     4      5...
1    1
2    2   -3
3    3  -12   11
4    4  -30   70   -50
5    5  -60  255  -450   274
6    6 -105  700 -2205  3248  -1764
...
n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2).
n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is
  Sum_{j=1..5} 1/(1-j*x), and this is
  (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x).
n=6 (A001553): the row polynomial factorizes into
     (2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4).
Sums of powers of the first n positive integers in terms of S2:
n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3).
From _Wolfdieter Lang_, Oct 12 2011: (Start)
Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2.
a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) =
  2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|.
S1,S2 formula for sums of powers with n=4, k=3:
A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
		

Crossrefs

Cf. A103438, A093556/A093557 (for sums of powers).

Programs

  • Mathematica
    a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
  • Python
    from itertools import count, islice
    from sympy.functions.combinatorial.numbers import stirling
    def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True)
    def A196837_gen(): # generator of terms
        return (A196837_T(n,m) for n in count(1) for m in range(n))
    A196837_list = list(islice(A196837_gen(),40)) # Chai Wah Wu, Oct 24 2024

Formula

a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by
(Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above).
Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993.
From Wolfdieter Lang, Oct 12 2011: (Start)
The row polynomial P(n,x) is therefore
Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to:
a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link.
(End)
A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - Matt Majic, Nov 01 2019

A001552 a(n) = 1^n + 2^n + ... + 5^n.

Original entry on oeis.org

5, 15, 55, 225, 979, 4425, 20515, 96825, 462979, 2235465, 10874275, 53201625, 261453379, 1289414505, 6376750435, 31605701625, 156925970179, 780248593545, 3883804424995, 19349527020825, 96470431101379, 481245667164585, 2401809362313955, 11991391850823225
Offset: 0

Views

Author

Keywords

Comments

a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049460 ((signed) 5-restricted Stirling1 numbers), which is the inverse triangle of A193685 (5-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - Wolfdieter Lang, Oct 10 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of array A103438.

Programs

  • Mathematica
    Table[Total[Range[5]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
  • PARI
    a(n)=if(n<0,0,sum(k=1,5,k^n))
    
  • Sage
    [3**n + sigma(4, n) + 5**n for n in range(22)] # Zerinvary Lajos, Jun 04 2009
    
  • Sage
    [1 + 2**n + 3**n + 4**n + 5**n for n in range(22)] # Zerinvary Lajos, Jun 04 2009

Formula

a(n) = Sum_{k=1..5} k^n, n >= 0.
O.g.f.: (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1 - j*x). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x)*(1-exp(5*x))/(1-exp(x)) = Sum_{j=1..5} exp(j*x) (trivial). - Wolfdieter Lang, Oct 10 2011

A007487 Sum of 9th powers.

Original entry on oeis.org

0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 1574304985, 3932252676, 9092033028, 19696532401, 40357579185, 78800938560, 147520415296, 266108291793, 464467582161, 787155279940, 1299155279940, 2093435326521, 3300704544313
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 9 of array A103438.

Programs

  • Magma
    [&+[n^9: n in [0..m]]: m in [0..22]]; // Bruno Berselli, Aug 23 2011
    
  • Maple
    [seq(add(i^9,i=1..n),n=0..40)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^9 od: seq(a[n], n=0..22); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    lst={};s=0;Do[s=s+n^9;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^9, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^9] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    a(n)=n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 \\ Charles R Greathouse IV, Oct 07 2015
  • Python
    A007487_list, m = [0], [362880, -1451520, 2328480, -1905120, 834120, -186480, 18150, -510, 1, 0, 0]
    for _ in range(10**2):
        for i in range(10):
            m[i+1]+= m[i]
        A007487_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    

Formula

a(n) = n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 (see MathWorld, Power Sum, formula 39). a(n) = n*A000542(n) - Sum_{i=0..n-1} A000542(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^11. a(n) = a(-n-1). - Bruno Berselli, Aug 23 2011
a(n) = -Sum_{j=1..9} j*Stirling1(n+1,n+1-j)*Stirling2(n+9-j,n). - Mircea Merca, Jan 25 2014
a(n) = (16/5)*A000217(n)^5 - 4*A000217(n)^4 + (12/5)*A000217(n)^3 - (3/5)*A000217(n)^2. - Michael Raney, Mar 14 2016
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10. - Wesley Ivan Hurt, Dec 21 2016
a(n) = 288*A005585(n-1)^2 + 1728*A108679(n-3) + A062392(n)^2. - Yasser Arath Chavez Reyes, May 11 2024
a(n) = Sum_{i=1..n} J_9(i)*floor(n/i), where J_9 is A069094. - Ridouane Oudra, Jul 17 2025

A093556 Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -4, 2, 0, 1, -5, 3, -3, 0, 1, -4, 17, -10, 5, 0, 1, -35, 287, -118, 691, -691, 0, 1, -8, 112, -352, 718, -280, 140, 0, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, 1, -33, 506, -2585, 7579, -198793, 1540967, -627073, 1222277, -1222277, 0
Offset: 1

Views

Author

Wolfdieter Lang, Apr 02 2004

Keywords

Comments

The companion triangle with the denominators is A093557.
In the 1986 Edwards reference, eq. 7, p. 453, the lower triangular matrix F^{-1} is obtained from F^{-1}(m,l) = A(m,m-l)/m with m >= 2, l >= 2. See the W. Lang link for this triangle.
Sum_{j=1..n} j^(2*m-1) = Sum_{k=0..m-1} A(m,k)*u^(m-k)/(2*m), with u:=n*(n+1), A(m,k):= A093556(m,k)/ A093557(m,k) and m=1,2,... (Faulhaber's m-th row polynomial in falling powers of u:=n*(n+1), divided by 2*m, gives the sum of the (2*m-1)-th power of the first n integers > 0. See the W. Lang link for the Faulhaber triangle.)
Sum_{j=1..n} j^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} (m-j)*A(m,j)*(n*(n+1))^(m-1-j)/(2*m*(2*m-1)), with u:=n*(n+1) and m >= 2. Sum of the even powers of the first n integers > 0. From the bottom of p. 288 of the 1993 Knuth reference with A^{(m)}_k = A(m,k). See also A093558 with A093559.

Examples

			Triangle begins:
  [1];
  [1,0];
  [1,-1,0];
  [1,-4,2,0];
...
Numerators of Knuth's Faulhaber triangle A(m,k):
  [1],
  [1, 0],
  [1, -1/2, 0],
  [1, -4/3, 2/3, 0],
  ...
A(m,m-1)=1 if m=1, else 0.
Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:
  [1/2],
  [-1/6, 1/3],
  [1/6, -1/3, 1/4],
  [-3/10, 3/5, -1/2, 1/5],
  ...
		

References

  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.

Crossrefs

Cf. A093557 (denominators).
Cf. A065551 and A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.

Programs

  • Mathematica
    a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
  • PARI
    T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ Michel Marcus, Aug 03 2025

Formula

a(m, k) = numerator(A(m, k)) with recursion: A(m, 0)=1, A(m, k) = -(Sum_{j=0..k-1} binomial(m-j, 2*k+1-2*j)*A(m, j))/(m-k) if 0 <= k <= m-1, otherwise 0. From the Knuth 1993 reference, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
A(m, k) = ((-1)^(m-k))*Sum_{j=0..m-k} binomial(2*m, m-k-j)*binomial(m-k+j, j)*((m-k-j)/(m-k+j))*Bernoulli(m+k+j). From the Knuth 1993 reference, p. 289, last eq. with A^{(m)}_k = A(m, k). Attributed to I. M. Gessel and X. G. Viennot (see A065551 for the 1989 reference). For Bernoulli numbers see A027641 with A027642.

Extensions

More terms from Michel Marcus, Aug 03 2025

A215083 Triangle T(n,k) = sum of the k first n-th powers.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 9, 36, 0, 1, 17, 98, 354, 0, 1, 33, 276, 1300, 4425, 0, 1, 65, 794, 4890, 20515, 67171, 0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

First term T(0,0) = 0 can be computed as 1 if one starts the sum at j=0 and take the convention 0^0 = 1.

Examples

			Triangle starts (using the convention 0^0 = 1, see the first comment):
[0] 1
[1] 0, 1
[2] 0, 1,  5
[3] 0, 1,  9,  36
[4] 0, 1, 17,  98,  354
[5] 0, 1, 33, 276, 1300,  4425
[6] 0, 1, 65, 794, 4890, 20515, 67171
		

Crossrefs

Row sums are A215083.
A215078 is the product of this array with the binomial array.
T(3,k) is the beginning of A000537.
T(4,k) is the beginning of A000538.
T(5,k) is the beginning of A000539.
Cf. A103438.

Programs

  • Maple
    A215083 := (n, k) -> add(i^n, i=0..k):
    for n from 0 to 8 do seq(A215083(n, k), k=0..n) od; # Peter Luschny, Oct 02 2017
  • Mathematica
    Flatten[Table[Table[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 10}], 1]
    Table[ HarmonicNumber[k, -n], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)

Formula

T(n, k) = Sum_{j=1..k} j^n
Sum_{j=0..n}((-1)^(n-j)/(j+1)*binomial(n+1,j+1)*T(n,j)) are the Bernoulli numbers B(n) = B(n, 1) by a formula of L. Kronecker. - Peter Luschny, Oct 02 2017

A076015 Sum of the (n-1)-th powers of the first n integers.

Original entry on oeis.org

1, 3, 14, 100, 979, 12201, 184820, 3297456, 67731333, 1574304985, 40851766526, 1170684360924, 36720042483591, 1251308658130545, 46034015337733480, 1818399978159990976, 76762718946972480009
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

a(n) is the number of length n sequences of [n] that start with their maximum value.
By symmetry, counts many other simple classes of endofunctions.

Examples

			The 3 sequences for n=2 are 11, 21, 22.
The 14 = 3^0 + 3^1 + 3^2 sequences starting with their maximum value for n=3 are 111, 211, 212, 221, 222, 311, 312, 313, 321, 322, 323, 331, 332, 333.
		

Crossrefs

Cf. A076014.
A diagonal of array A103438.
A subset of A000312.

Programs

Formula

a(n) = Sum_{m=1..n} m^(n-1), n >= 1.

Extensions

Definition changed and example added by Olivier Gérard, Jan 28 2023

A135225 Pascal's triangle A007318 augmented with a leftmost border column of 1's.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums give A094373.
From Peter Bala, Sep 08 2011: (Start)
This augmented Pascal array, call it P, has interesting connections with the Bernoulli polynomials B(n,x). The infinitesimal generator S of P is the array such that exp(S) = P. The array S is obtained by augmenting the infinitesimal generator A132440 of the Pascal triangle with an initial column [0, 0, 1/2, 1/6, 0, -1/30, ...] on the left. The entries in this column, after the first two zeros, are the Bernoulli values B(n,1), n>=1.
The array P is also connected with the problem of summing powers of consecutive integers. In the array P^n, the entry in position p+1 of the first column is equal to sum {k = 1..n} k^p - see the Example section below.
For similar results for the square of Pascal's triangle see A062715.
Note: If we augment Pascal's triangle with the column [1, 1, x, x^2, x^3, ...] on the left, the resulting lower unit triangular array has the Bernoulli polynomials B(n,x) in the first column of its infinitesimal generator. The present case is when x = 1.
(End)

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2, 1;
  1, 1, 3, 3, 1;
  1, 1, 4, 6, 4, 1;
...
The infinitesimal generator for P begins:
  /0
  |0.......0
  |1/2.....1...0
  |1/6.....0...2....0
  |0.......0...0....3....0
  |-1/30...0...0....0....4....0
  |0.......0...0....0....0....5....0
  |1/42....0...0....0....0....0....6....0
  |...
  \
The array P^n begins:
  /1
  |1+1+...+1........1
  |1+2+...+n........n.........1
  |1+2^2+...+n^2....n^2.....2*n........1
  |1+2^3+...+n^3....n^3.....3*n^2....3*n.......1
  |...
  \
More generally, the array P^t, defined as exp(t*S) for complex t, begins:
  /1
  |B(1,1+t)-B(1,1)..........1
  |1/2*(B(2,1+t)-B(2,1))....t.........1
  |1/3*(B(3,1+t)-B(3,1))....t^2.....2*t........1
  |1/4*(B(4,1+t)-B(4,1))....t^3.....3*t^2....3*t.......1
  |...
  \
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 1;
        else return Binomial(n-1,k-1);
        fi; end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 19 2019
  • Magma
    T:= func< n, k | k eq 0 select 1 else Binomial(n-1, k-1) >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 19 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        else binomial(n-1, k-1)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, Binomial[n-1, k-1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    T(n,k) = if(k==0, 1, binomial(n-1, k-1)); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==0): return 1
        else: return binomial(n-1, k-1)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 19 2019
    

Formula

A103451 * A007318 * A000012(signed), where A000012(signed) = (1; -1,1; 1,-1,1; ...); as infinite lower triangular matrices.
Given A007318, binomial(n,k) is shifted to T(n+1,k+1) and a leftmost border of 1's is added.

Extensions

Corrected by R. J. Mathar, Apr 16 2013

A001551 a(n) = 1^n + 2^n + 3^n + 4^n.

Original entry on oeis.org

4, 10, 30, 100, 354, 1300, 4890, 18700, 72354, 282340, 1108650, 4373500, 17312754, 68711380, 273234810, 1088123500, 4338079554, 17309140420, 69107159370, 276040692700, 1102999460754, 4408508961460, 17623571298330, 70462895745100, 281757423024354
Offset: 0

Views

Author

Keywords

Comments

From Wolfdieter Lang, Oct 10 2011: (Start)
a(n) = 2*A196836, n >= 0.
a(n)*(-1)^n, n >= 0, gives the z-sequence of the Sheffer triangle A049459 ((signed) 4-restricted Stirling1) which is the inverse Sheffer triangle of A143496 with offset [0,0](4-restricted Stirling2). See the W. Lang link under A006232 for general Sheffer a- and z-sequences. The a-sequence of every (signed) r-restricted Stirling1 number Sheffer triangle is A027641/A027642 (Bernoulli numbers).
(End)

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of array A103438.

Programs

  • Maple
    A001551:=-2*(5*z-2)*(5*z**2-5*z+1)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Total[Range[4]^n], {n, 0, 40}] (* T. D. Noe, Oct 10 2011 *)
  • Sage
    [3**n + sigma(4, n) for n in range(23)]  # Zerinvary Lajos, Jun 04 2009

Formula

From Wolfdieter Lang, Oct 10 2011: (Start)
E.g.f.: (1-exp(4*x))/(exp(-x)-1) = Sum_{j=1..4} exp(j*x) (trivial).
O.g.f.: 2*(2-5*x)*(1-5*x+5*x^2)/(Product_{j=1..4} (1-j*x)) (via Laplace transformation of the o.g.f., and partial fraction decomposition backwards). See the Maple Program for the o.g.f. conjecture by Simon Plouffe. This has now been proved. (End)

A023002 Sum of 10th powers.

Original entry on oeis.org

0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Row 10 of array A103438.

Programs

Formula

a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - Bruno Berselli, Apr 26 2010
a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - Bruno Berselli, Apr 27 2010
From Bruno Berselli, Aug 23 2011: (Start)
a(n) = -a(-n-1).
G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i=1..n} J_10(i)*floor(n/i), where J_10 is A069095. - Ridouane Oudra, Jul 17 2025
Previous Showing 11-20 of 46 results. Next